J Glob Optim (2008) 40:427-442
DOI 10.1007/s10898-007-9213-6

Singular integral operators in Morrey spaces and interior
regularity of solutions to systems of linear PDE’s

Lubomira G. Softova

Received: 26 June 2007 / Accepted: 11 July 2007 / Published online: 3 August 2007
© Springer Science+Business Media, LLC 2007

Abstract We obtain boundedness in Morrey spaces of singular integral operators with
Calder6n-Zygmund type kernel of mixed homogeneity. These estimates are used for the study
of the interior regularity of the solutions of linear elliptic/parabolic systems. The proved Po-
incaré-type inequality permits to describe the Holder, Morrey, and BMO regularity of the
lower-order derivatives of the solutions.
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1 Singular integral estimates in Morrey spaces

We are interested in continuity in Morrey spaces of the following integral operators

Rf() = P.V. / k(i x — ) £ (»)dy
R? (1)

€la, flx) = P~V~/ k(x;x = y)laly) —a()]f(y)dy.
RY(
The kernel k(x, &) is a singular one, satisfying Calderén—Zygmund type conditions. Pre-

cisely, let oy, ..., o, be real numbers, o; > 1,0 = Z;’: 1 o; and set S"~! for the unit sphere
in R”.

Definition 1 A function k(x; &): R" x {R"\ {0}} — R is a variable kernel of mixed homo-
geneity if:
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(i) k(x;-)is a Calderon-Zygmund type kernel for almost all fixed x € R", i.e.
(ia) k(x,-) € CZ@R"\ {0});
(ip) k(x, u®1&, ..., n&,) = u %k (x,§) foreach u > 0;
(ic) Jonr k(x, )|doe < 0o and [g—1 k(x, &)doz = 0.

(i) supgegn-1 D?k(x; “;‘)‘ < C(B) for every multiindex B, independently of x.

In the special case o; = 1 and thus o = n, Definition 1 gives rise to the variable Calderén-
Zygmund kernel (cf. [2,3,6,18]). The mixed homogeneity condition suggests to endow R”
with a metric that takes into account (ip). Thus, following Fabes and Riviére [10], the function
F(x,p) = Z?:l xl.z/,o2"‘i, considered for a fixed x € R”, is a decreasing one in p > 0 and
the equation F(x, p) = 1 possesses a unique solution p(x). It is a simple matter to check
that p (x — y) defines a distance between any two points x, y € R" ([10,Remark 1]). Further,

X = ﬁ = (péﬁ e W) € S"!. The balls with respect to p(x), centered at the
origin and of radius r are the ellipsoids
2 2
n X *n o
EOV)=1{xeR": 2a1+"'+ T <1¢, meas(&) ~r
r 720

and meas (&, ) stands for the Lebesgue measure. For the sake of completeness the definitions
of the spaces we are going to use are given with respect to the metric p(x).

Definition 2 For measurable and locally integrable function f: R" — R set

1
nf(R) = sup
/ v 1&r]

/g |f(y) — fe |dy forevery R > 0,

where &, is any ellipsoid in R" of radius r, and fg, = 1&17! ffr S )dy. Then:

e [ € BMO (bounded mean oscillation, [15]) if || f ||« := supg ns(R) < +o0. || fll« isa
norm in BM O modulo constant functions under which BM O is a Banach space.

e [ € VMO (vanishing mean oscillation, [22]) if f € BMO and limg_.ons(R) = 0.
The quantity ny(R) is referred to as a V M O-modulus of f.

For a given domain Q C R", the spaces BM O (2) and VM O (K2) are defined in the same
manner, just taking £, N Q instead of &, above.

Definition 3 A measurable function f € LP(R"), p € (1,400), belongs to the Morrey
space LP*(R™) with » € (0, ), if

1 1/p
I fllpr = (SUP 7/ |f(y)|”dy) < 00, (2)
r>0"" J&,

where &, stands for any ellipsoid of radius r. Similarly, the space LP*(Q) and the norm
| flp,s. @ are defined by taking £ N Q in (2).

Let f € LP* anda € BMO. For ¢ > 0 define the operators &, f and €[a, f] by
Re f(x) = /( : k(x;x —y) f(ndy,  €la, f1(x) := Ke(af)(x) — a(x)Ke f(x).
px—y)>e

Our main result ensures existence and boundedness of the integrals (1).
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Theorem 4 Forany f € LP*, p € (1, 400), A € (0, &) and a € BM O we have

Rf(x) = lim R f(x),  €la, flx) = lim &[a, £](x),
IRfpr = Clflipa.  N€la, flllpr = Cllallll £l p.a-

3

Corollary 5 Let Q2 be an open subset of R™ and k(x; £): 2 x (R"\{0}) - R,a € BM O().
Then, for any f € LP*(Q) and almost all x € Q the integrals &, €[a, ] € LP*(Q) and
there is a constant C = C(n, p, :, a, 2, k) such that

IRflIpsa =Clflpra, I€a, fllpra < Clallflpze- “

Corollary 6 In addition to the assumptions of Corollary 5, leta € VM O (2) with VM O-
modulus 1,. Then, for each ¢ > 0 there is ro = (g, n5) > 0 such that for any r € (0, ro) and
any ellipsoid &, C Q2 one has

I€la, flllpe, < Cell fllpie VI € LPME). (&)

2 Interior regularity for parabolic systems with discontinuous data

Let 2 be a domain in R"”, n > 2 and define Q = Q x (0, T) with T > 0. We consider the
following linear system of order 2b, b > 1

L£u:= Dyu(x,t) — Z Ay (x,)D%u(x,t) =f(x,1) (6)
la|=2b

for the unknown vector-valued function w: Q — R given by the transpose u(x,t) =
(1, 0y um e, 0) £ = (fi, ..., fu)T, and where Ay (x, 7) stands for the m x m

. m .
matrix [a{;" (x, t)]k ~of the measurable coefficients af/ : Q0 — R.Here,a = (ay, ..., ay)

is a multiindex of length || = a1 + -+ + ay, Dy := /3t and D* = DY := D{' ... Dy"
with D; := 9/0x;. Further, D0 = (D%uy, ..., D"‘um)T and D*u substitutes any derivative
D%u with |a| = s € N.

We assume that the system (6) is uniformly parabolic in the sense of Petrovskii (see
[8,9,12,17,24]). Namely, the p-roots of the m-degree polynomial

det 1 pldy — D Agx. ()1 =0 (i =+-1) )
loc|=2b
satisfy, for some § > O and all s = 1, ..., m, the inequality
Re p(x,1,&) < —8|€|*Y foraa. (x,1) € Q, VE € R™. ®)
Here Id,, is the identity m x m matrix, §% := &' 5% - - - &, and | - | indicates the Euclidean

norm in R". For fixed (x, t) € Q and & € R”, ps(x, t, £) are nothing else than the eigenvalues
of the m x m matrix (—1)? Z\a\=2b Ay (x, )&%, and the parabolicity condition (8) means
these have negative real part.

Our goal is to obtain interior Holder regularity of the strong solutions to (6) as a byproduct
of a priori estimates in Sobolev and Sobolev—Morrey spaces. Let us recall the definitions of
these functional classes.
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Definition 7 The parabolic Sobolev space W;b’l(Q), p € (1,+00), is the collection of

L?(Q) functionsu: Q — Rall of which distribution derivatives D;u and D$ u with |o| < 2b,
2b,1

belong to L?(Q). The norm in W, (Q) is
2b
lull 201y = I Drtllpig + D 1Dl pio. Iullpio —Znukupg,
s=0 k=1
2b,1

When dealing with localized versions of W)™ we always mean local in spatial variables x
2”10‘C(Q) ifu e Wy'(Q x (0, T)) for any Qe Q.
Let p € (1, 400) and A € (0, n + 2b). The Sobolev—Morrey space W ( Q) consists of

all functions u € Wp (Q) with generalized derivatives D;u and D% u, |oc| < 2b, belonging
to L7*(Q) and the norm is given by

and global in time, thatis,u € W

2b
lully 201 gy = 1Dl pao + 2 D 1Dl piso-
P,

s=0 |a|=s

Endow R"! = R” x R, with the parabolic metric o(x, t) = max{|x/|, |t]'/?"}. We shall
employ the system of parabolic cylinders

Cri= By (x0) x (to — r**, 10), B, (x0) :={x e R": |x —xo| <r} )

with meas (C,) comparable to r"12b Tt is obvious that the metric o(x, 1)} is equivalent to
p(x, 7). In fact, for any ellipsoid £ there exist cylinders C and C of measures equivalent to
meas (£) and such that C C £ C C. Our main results are as follows.

Theorem 8 Suppose (8), 1 < g < p < +o9, aa e VMONL®Q),f e Lloc(Q) and let

ue W2b '(Q) bea strong solution of (6) such that u(x, 0) = 0.

,loc
Then the operator £ improves integrability, that is, u € WZblolc(Q), and for any Q' =

" x (O T), Q" =Q"x(0,T), Q € Q" € Q, there is a constant C depending on n, p, m,
b s, ||aa lloc:0: 1, ki and dist (', 0Q") such that

lully2n1 gy = € (IEll i + uligr) - (10)
Since WZb "1(Q') is contained into the Besov space B 91200y with o = 2b — "*2’7 >
0 and B U/ 2b(Q ) coincides with the Holder space C* ‘7/ 2"y for non- integer o (see

[13,14, 17,25, Theorems 2.5, 2.7]), we get

Corollary 9 In addition to the hypotheses of Theorem 8, suppose p > ";—b%. Then u €
L°°(Q’) and there is a constant C such that

Iulloo:or < C (Ifllp: 07 + llullp:07) -

Moreover, the x-derivatives of u are Holder continuous for large values of p. Precisely,

. ifpc (gﬁf, zgjffl) forafixeds € (0, 1,...,2b —2) then D*u € Co%/2(Q') with
o, =2b—s5 — "‘;#;
e ifpe (n+2b,400) then D=1y ¢ CO'Zb—],UZb—I/zb(Q/) with oap—1 = 1 — %
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and in all cases

|DSu(x, 1) — DSu(x’, 1) c (Il + ully o)
sup . < p:0" u Q"

wanzay (1x = x|+ |t —1/]1/20)

(x,0, (x',1)eQ’

fors €{0,1,...,2b—1}.

Our next result provides improving-of-integrability property of £ and a priori estimates in
Sobolev—Morrey spaces for solutions of (6) with Morrey right-hand side.

Theorem 10 Suppose (8), 1 < g < p < 400, A € (0,n + 2b), a(];j e VMO N L®(Q),
fe LP’A(Q) and letu € W2 (Q) be a strong solution of (6) such that u(x,0) = 0. Then

loc q.loc

2b,
ue WP’A}IOC(Q) and

lullyy21 0y = € (IEllpasor + lullpsor) (11
with a constant C depending on the quantities listed in Theorem 8 and on X in addition.

As consequence of (11) we obtain precise characterization of Morrey, BM O and Holder
regularity of the derivatives D*u with s € {0, 1, ..., 2b — 1}. Precisely,

Corollary 11 Under the hypotheses of Theorem 10 fixan s € {0, 1, ..., 2b — 1}. Then there
is a constant C such that

e ifpe (1, ”3,33;*) then DSu € LP>@b=9P+t2(0') and

1Dl @p-sypsior < € (Ilpasor + i)
o fp= % then DSu € BMO(Q') and

ID%ulls;or < € (I€lpas07 + Il p3s07) 5

. 2b—A 2b—A |1 2 . 2b—)
*» ifpe (”3,,_5 : ’;;_H) then D¥w € C%%/?%(Q') with o5 = 2b — s — "=20=" and

Dt D= DO (100 + )
sup - 20" T Wp207) -
()£ 1) (|x _ x/l + |l _ t/|l/2b)°'. p p
(x.0), ',1)eQ’
A simple geometric interpretation of the results of Corollaries 9 and 11 is proposed on Fig. 1. A
typical situation is considered for the couple (p,A) lying in the semistrip
{(p,A): p>1,0<A<n+2b}and s € {0,1,...,2b — 1}. The points B; on the

p-axis are simply ('2';“31:, O), B = (1,0), and Ay = (1,n + s) is the intersection of the
line {p = 1} with the line passing through (0, n 4+ 2b) and B;. If (p, 1) belongs to the open
right triangle ABBgA; then D*u € LP-Ch=9)p+th (0N, In particular, (p, 1) € ABByAyp
yields u € LP'”’”“(Q’) whereas u € BM O(Q’) if (p, 1) lies on the open line segment
(Ao, Bo). Lets € {0, ...,2b — 2} and take (p, 1) in the interior of Ry := ByBsy1As+1As.
Then the spatial derivatives D*u are Holder continuous with exponent o given by Corollary
11, while D*Tlu e LP-Cb=s=Dp+i(0") Moreover, oy is the length |C Ag| of the segment
(C, As) where C = C(p, A) is the intersection of the vertical line {p = 1} with the line
connecting the points (p, ) and (0, n + 2b). If (p, L) € (As, Bs) we have D’u € BMO,

! In the case s = 2b — 1 this inclusion rewrites naturally as p € (n +2b — X, +00).
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n+2b

{

n+2b—171"

n+s+1

o

n+s] T E

0 1 n+2b ‘n+2b n+2b n+2b p
2b 2b—s 2b—s—1

Fig. 1 The plane O,

whereas (p, M) € (As+1, Bs+1) implies D*tlu € BMO. The situation is similar for the
derivatives D2~ 1u as well (i.e., s = 2b — 1) but Ryp_; is now the shadowed unbounded
region on the picture. Thus, (p’, 1) € Ryp—1 gives that D?'=1y are Holder continuous with
exponent opp—1 = |C'Ap—1], C' = C'(p’,)\), while (p’,\)) € (Azp—1, Bap—1) yields
D?*~lw € BMO. To interpret the statement of Corollary 9, we simply have to consider
points on the p-axis with p > 1. This way, p > % impliesu € L*°(Q’) whereas D*u are
Holder continuous with exponent oy = 2b —s — % if (p, 0) € (By, Bs+1) (with the setting
By, := 400). We will derive in Sect. 4 an improvement of Corollary 9 which, loosely speak-
ing, sounds like Corollary 11 with A = 0. Thus (cf. Corollary 16), D¥u € LP-Cb=9P(Q') if
(p,0) € (B, By) while (p, 0) = By gives D’'u € VM O(Q').

3 Gaussian-type potentials

To obtain an explicit formula for the solution of the system (6), we fix atlf/ ’s at some interior
point (xo, o) € O, set AY := A, (x0, t0) = {af/ (x0, to)}
coefficients operator

m
il and consider the constant
JJ=

£o:=1d,D, — > A)D".
lo|=2b
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It is known (see [24]) that the fundamental matrix T(x, t) = {Féj (x, t)} of £¢ has

m
k,j=1
entries

kj =
1—‘()](-xs t) = L./‘k(Dtv Da)ro(x7 t)v

where {ij(D,,D"‘)}’J’.fk:1 is the cofactor matrix of {Id,,D; — Z‘a‘:% AgDD‘} =
. ik m
{5‘/th - Zm:% a({z (x0, tO)Da}j

abolic equation

,and Fo (x, t) is the fundamental solution of the par-

det[Ide, - > AgD“]u =0. (12)
la|=2b

(Note that L j is either a homogeneous differential operator of order 2b(m — 1) or the oper-
ator of multiplication by 0). Applying Fourier transform in x and Laplace transform in ¢, it
is easy to get

~ 1 . el!
Folv. 0 = Q)" 2wi / ! .
R <) det {pldy = X015 AYi6)°

dp, (13)
|

where €(&) is a contour in the complex p-plane enclosing all the roots of (7) and therefore,
in view of (8), could be taken to lie in the left half-plane. Thus (cf. [9]), the fundamental
matrix To(x, t) of £¢ after a transformation of variables is given by

1

0 fort <0.

In other words, I'g(x, ) possesses properties analogous to these of the Gauss kernel (see
[8,9,11,12,17,18,24]). Precisely,

(P1) Regularity: Tg € C®(R"T1\ {0}).
(P2) Mixed homogeneity: for any ;1 > 0 and any multiindex S it holds

Lo(ux, p?’1) = w™"To(x, 1), DPTo(ux, w?’t) = p" PIDPTo(x, ).
(P3) Vanishing property on the unit sphere S"* :
/” D*To(X,)doxr =0 foranya, |a| =2b.
To show this property define the sets A = {(x,#): t > 0, 1 < p(x,t) < 2},
B={(x,t): 1<t <22} By ={(x,t): 0 <t <k®, p(x,t) >kl k=1,2(f

[10, Appendix]). Straightforward calculations based on the properties of the metric,
(P2) and A = (BU By) \ By yield

/ DT (x, t)dxdr = / (0(x, )" DT (x, T)dxdr
A A
2 dp _ _
= / 7/ Daro(}, t)d(f(fj) = log 2/ Dar()(f, t)da(yf)
1 P n §n
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On the other hand,

/ D*To(x, t)dxdr = ;/ DTy L dxdt—/ D*To(x, t)dxdr
5 olx, = %, o\3 7% = Ja olx, ;

1 22}7
/D”‘Fo(x,t)dxdt:/ DT, (i],l)dxdt:/
B Bt 13 1

which gives

/D"‘l‘o(x,t)dxdt= /+/ —/ ---=/D"‘l"o(x,t)dxdt
A B B By B

- 2blog2/ DTo(x, 1dx = 0.
Rn

dt
7/ D%To(x, dx

The last equality follows from the vanishing property on hyperplanes (cf. [24]) pos-
sessed by I'g(x, t) forany r > 0 :

Id,, ifs+ |8 =0,
s B _ m
/,1 DfDXFO("”)dx_[o if s + 8] > 0.

(Ps) Boundedness of the derivatives:

sup |DPTo(F,7)| < C(n, B, max|A%|) V multiindex 8.
o

(x,1)esn
(Ps) Integrability:
DPTy e LL . (R"™) for |B| <2b, D°T¢ & LL.(R"™1) for || = 2b.

Let v e C®(R"!) be compactly supported in x, v(x, 0) = 0. Take (xo, fp) € suppV and
consider the system

L£ov = Z (Aa(x; t) - Aot(x()s tO))DaV + SV()C, t) = g(x7 t)' (14)
la|=2b

The solution v can be written as a Gaussian-type potential

v(x,t) = / Fo(x —y,t —1)g(y, r)dydr. (15)
Rn+!1

The higher order derivatives in x have the form

D%v(x,1) = P.V./

Rn+

D*To(x — y,t — 1)g(y, T)dydt
! (16)

+/ Dﬂxro(y’ T)Vsda(y,r) g(xs t)5 |(¥| = 2b’
Sn
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where I'g(x — y,t — ) = I'(x0, f0; x — ¥, ¢ — 7) and the dependence on (x, o) is through
Ag. Since the choice of (x, fp) is free, we set (xg, to) = (x, t), thus

D%v(x,t) = P.V./ N DT (x,t;x —y, t — 7)Lv(y, T)dydt
Rn

+ > P.V./ DOT(x,t;x — y,t — 1)
o' [=2b Rn+l1 (17)
x (A (v, 7) — Ay (x, t))D;‘ v(y, 7)dydt

+/ D’ssr(x, t;y, T)vsdo(y ) L£v(x, 1)

=18, (8V) + D €Ay, DUV +F(x,0)LV(x, 1), Ya:|e|=2b
|/ |=2b

where the derivatives D*T'(-, -; -, -) are taken with respect to the third variable.

Denote K(x, t; y, 1) := D;{F(x, t; y, t) with |o| = 2b. Each entry of the m x m matrix
k is a Calderén-Zygmund kernel in the sense of the Definition 1. In fact, (i,) and (i) are
just properties (P;) and (P2) of the fundamental solution, while i) and ii) follow from (P3)
and (P4). Finally, (Ps) shows that &, and €, are really singular integral operators. For what
concerns their boundedness in Lebesgue and Morrey spaces, we have

Lemma 12 Let |a| = |&| = 2b and Ay, € L*®(Q). For each p € (1, +00) there exists a
constant C = C(n,m, b, 8, ||Aglloc: 0. p) such that for any f € LP(Q)

[Refllp;0 = Clifllp;0. l€a[Ax. Elllp;0 = CllAw s lIfll p; 0- (18)

For each p € (1, +00) and each A € (0, n 4 2b) there is a constant C depending on n, m,
b, 8, |Aglloo; 0, p and A such that for any £ € LP*(Q)

[Rafllpr;0 = Clifllpi0. I1€alAg, fllip 0 = CllAw s 0lIfllp2;0- 19)

Moreover, let A, € VM O(Q) N L*®°(Q) with VM O-modulus na,,. Then for each ¢ > 0
there exists ro = ro(e, na,) such that if r < ro we have

I€alAg, Tl pic, < Cellfllpe, VEe€LP(C), (20)
I€a[Ay, f]||p,A;Cr =< C8||f||p,)\;c, Vfe LP’A(Cr) (21)

for any parabolic cylinder C, C Q.

The first bound in (18) is proved by Fabes and Riviére [10, Theorem 1] for general kernels
of mixed homogeneity. The second one is obtained in [1, Theorem 2.12] in the case b = 1.
The passage from constant to variable kernels makes use of Calder6n-Zygmund’s approach
[2,3] of expansion into spherical harmonics and leads to (18) for b > 1 as well. The estimates
(19) follow from Theorem 4 and Corollary 5 (cf. [19]). The estimates (20) and (21) follow
from (18) and (19) on the base of A, € VM O (see [6, Theorem 2.13],[19, Corollary 2.8],
[23, Theorem 3.7]).

Remark 13 Employing density arguments and (18) it is easily seen that the representation

formula (17) still holds true (almost everywhere) for compactly supported in x functions
2b,1
v € W,7 " such that v(x, 0) = 0.
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4 Sketch of the proofs

Proof (Theorem 8) We shall prove (10) first, supposing u € Wif’l’olc(Q). Without loss of
generality, extend u(x, ¢) as 0 for t < 0, fix (xg, 7p) € suppu and consider the parabolic
cylinder C, (xo, t9). Let v € W,%b’l(Cr) with v(x, tg — r2?) = 0. In view of Remark 13, (17)

and Lemma 12, for each ¢ > 0 there is ro(e, na,) such that
1D*Vpc, = € 12Vl e, + 1DVl pic,)

whenever r < rg. Choosing ¢ small enough we obtain

ID*V| pc, < ClIEVIlpic, - (22)
Letr € (0,r9),0 € (0,1),0’ =03 —0)/2 > 6 and define the cut-off function
ox, 1) = 1)), 0<¢ =1, (23)

with @1 € C§°(Br(x0)) and ¢ € C°°(R) such that

_[1 x e By (x) 1 et —0r)?, 1)
‘“(")_[0 x ¢ By, (x0) 9"2(’)_[0 t<ito—(6'r).

Since 0’ — 0 = 6(1 — 0)/2, it is clear that |[D¢| < C(s)[0(1 —0)r]~* forany | <s <2b
and |D,¢| < C[O(1 — 0)r] 2.

Defining v = ¢u, calculating £v = (L1, ..., £v,)7, applying (22) to v and letting
Il - I p;r := I - ll p;cy, for the sake of simplicity, we get into

ID* ]l por < ID** VI porr < CIEV prorr
2b—-1 2b—s
D u”p'G’r ”u”p'@/r
< C\ £l -0 : : .
< (n ||p,9r+§ TR T

Defining the seminorms

O, := sup [6(1 —O)rI*|D*ull o, Vs €{0,...,2b},
0<6<l1

the last inequality rewrites as

2b—1
O < c(rz”nfnp;r + > 0+ @o). (24)

s=1
Proposition 14 (Interpolation inequality) There exists a constant C depending on n, m, b,
p and s, but independent of r, and such that

Op <&@y + )@)0 forany ¢ € (0,2).

5/2b—s

Fixing 6 = 1/2, taking suitable ¢ € (0, 2) and interpolating the intermediate seminorms in
(24), we obtain the following Caccioppoli-type estimate

102 ulyrs2 = € (Il + Cr=ull,) (25)

which holds also for || D;ul|,., /2 in view of the parabolic structure of (6). Therefore, the
desired estimate (10) follows from (25) after choosing r < dist (€', Q") and employing a
finite covering of Q’ by cylinders C;2.
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Turning back to Theorem 8, we use homotopy arguments in order to prove integrability
property of £. For any couple of multiindices o, &’ € 2 := {& € N": || = 2b} and any
g € L“(Cy), w € (1, 00) define the operator Uy o : L”(Cr) — L“(C;) as

Uy, og(x, 1)

= P.V./ DT (x,t;x —y,f — r)(Aa/(y, 7) — Ay (x, z))g(y, 7)dydr.
r (26)

Take the cut-off function (23) with & = 1/2 and set v = gu. Then £v = ¢(x, t)Lu +

£'(x,t, Dy)u € L9 (C,) with g; = min [p, Zf:’;zz_b;} if g < n+ 2b and q; = p otherwise

(see [25, Theorem 2.5]). To show v € W;,b’l (Cy) we rely on formula (17) and define

Volx,t) = P.V./ DT (x,t;x —y,t —1)Lv(y, T)dydr + F(x, ) &v(x,1) (27)
Cr

which belongs to L4!(C,) according to Lemma 12. Let w € [q, g1] and define the operator

W: (L2C)N = (L2(C)N, N = mcard (), by W(W) = (Wa(W))geq Where

WoW) = Vo + > Uy (War). (28)

a'eA

If r is small enough then Za, e e llLec,) < 1 because of Ay, € VM O and (20) and
W is a contraction mapping. Hence, there is a unique fixed point wo = W (wq) belonging to
any (L‘”(C,))N foreach w € [¢, q1].

Whence D®v € L9 (C,) according to (17) and this implies D*u, Dju e L9 (Crp2) by
virtue of f € LIOC(Q) and the parabolic structure of (6). To getu € WZI’IJC(Q), it remains to
iterate the above procedure finitely many times until g; = p. d

Proof (Theorem 10) Letu € W 2bklloc(Q) Then u € WZbIOIC(Q) and the representation for-
mula (17) applied to v = ¢u stlll holds true. This way the estimate (11) follows as in the
preceding proof making use of (19) and (21).

We shall stress now our attention on the improving- of—integrability property of the operator

£ in Morrey spaces. That is, letf € L (Q) and supposeu € W (Q) is a solution of (6)

with 1 < g < p < 4o00. Sincef € LIOC(Q), Theorem 8 givesu € W Zblolc(Q) Take arbitrary
w € (1,400) and p € (0, n + 2b). In view of (19), the operator Ua « as given by (26), is
well-defined from L“*#(C,) into itself and its norm is less than 1 if  is small enough. Arguing
as in the preceding proof, we get £v = ¢(x, t)Lu+ £/'(x, t, Dy)u with ord £ = 2b — 1. By
hypothesis £u € LP*(C,) and £'u € L?(C,). Employing Holder’s inequality, we get )3’ uc

LP*1(C,) with A1 = min{p, A} and therefore £v € L”*1(C,) as well. To getv € W]7 ()
we use (27) to define V,, which is in L?"*1 (C,) as Lemma 12 asserts. Taking o € [0, A1] and
consider the operator W : (LP’“(C,))N — (LP-* (C,))N as given by (28), it follows as in the
proof of Theorem 8 that W possesses a unique fixed point wo = (D%V)qeq € (Lrreny
for all € [0, A1]. If ;1 = A we have D**u, D,u € LP*(C,p) as desired. Otherwise,
a = p <randu e W' (C, ). Take again the cut-off function ¢ (cf. (23)) with 6 = 1/4
and calculate £v as above. Thus, £v € LP-*2 (Crj2) with A2 = min{2p, A} (see Lemma 15)
and the arguments already used give D?u, D € LV (Cr/4). It remains to repeat the
procedure finitely many times in order to complete the proof of Theorem 10. d

loc q loc
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Proof (Corollary 11) To obtain precise regularity of the lower order derivatives we need of
the following Poincaré type inequality. g

Lemma 15 Letu € W3 (C,), then, for each's € {0, 1,...,2b — 1}, we have

/ |D’u(x, r) — (D*u)c, |Pdxdr
Cr

<c (,,(217—5)17 (||D2bu”Z;C, + ||D,u||5;cr) 4P ||Ds+1u||§;cr)
where (D*u)c, is the integral average of D*u over C, and C = C(p, m, n, s).

Let O, = C, N Q' where 2r < dist (€', 9Q"). To begin with, take s = 2b — 1. Direct
calculations based on Lemma 15 lead to

e [ 1D ) = (0 g, Paxa
O

1 2b. 1P 1 4
< C(n, p.m) (;IID ulh o, + 1Dl

=c(Ip*”, 5 +1Dul”, ). 29)
where Q' = Q' x (0, T) and Q' € Q' € Q”. Taking the supremum with respect to r we get
the Campanato seminorm of D21y on the left-hand side which, in view of (11), turns out
to be bounded by the Morrey norms of f and u in Q”. Now, employing the embedding prop-
erties of Campanato spaces into Morrey and Holder ones (see [4], and [16] for more general
functional settings) we obtain as follows. If p +X < n+ 2b then D% =1y ¢ LP-PT*(Q') and
||D2b—1u||p’p+;\; o is controlled in terms of ||| , 3. o7 and [lull ;. 07. If p+A > n+2b then
D=1y ¢ cow-1:00-1/2b (') with 09—y = 1 — # (cf. [16, Corollary 1]). Finally,
if p+ A = n + 2b we first apply the Holder inequality to || D**~lu — (D**~la)c, |10,
and then Lemma 15 in order to obtain D**~lu € BM O(Q'). Having in mind the recursive
character of Lemma 15, we shall complete the proof of Corollary 11 by running induction
for decreasing values of s (see [20] for details).

The method employed in the proof of Corollary 11 could be applied also to derive Corol-
lary 9 directly, without relying on Besov spaces. Moreover, repeating the arguments already
used with A = 0, we get the following refinement of Corollary 9.

Corollary 16 Under the hypotheses of Theorem 8, fixan s € {0, 1, ..., 2b — 1}. Then there
is a constant C such that

o ifpe (1, g;rff) then D*u € LP-Cb=9P(Q") and

ID*ullp, 2p-s)pi0" < C (Ifllps 0 + 1l p07) 5
o ifp="152% then D'uec BMO(Q),
ID*ulls; 0" < C (Ifll o7 + Il p: o)

and moreover, D’u € VM O(Q).
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5 Interior regularity for elliptic systems

Consider a linear elliptic system in an open bounded domain  in R”, n > 2
L@, Dyui= > Ay(x)D*u(x) = f(x) (30)
loe|=2b
for the unknown vector-valued function u: Q@ — R™ where A, (x) is the m x m-matrix
. m .
{ag,k (x)} - and aék : © — R are measurable functions. We suppose (30) to be an elliptic

Jik=
system, that is, the characteristic determinant of £(x, £) is non-vanishing for a.a. x €  and

all £ # 0. This rewrites as (see [5,7])

36>0: det { > Ay(0)E* L = 8|E1P" aa.x €Q, V&R 31)
|or|=2b

Our goal is to obtain interior Holder regularity of the solutions to (30) as a byproduct of the
following a’priori estimate in Sobolev—Morrey classes.
Theorem 17 Suppose (31), aé e VMO(Q)NL®Q),f e L10C RQ),1<p<oo0<
zi PMQ) be a strong solution of (30). Then, for any Q' € Q" € Q
there is a constant C depending on n, m, b, p, X, 6, ||aék||oo;9, the VM O-moduli n,jk of the
coefficients (cf. [5,6]) and dist (', 9Q"), such that

A <n,andletu € W,

lallya.pa @y < C (Ifllpaer + lullp ) - (32)

It turns out, moreover, that the operator £ improves the integrability of solutions to (30).
In fact, by means of standard homotopy arguments and making use of formula (17) (cf.
[5,19,21, Sect. 3]), it is easy to get

Corollary 18 Under the hypotheses of Theorem 17, suppose u € W]il;’q(Q) withq € (1, pl.
Thenu € W2 P (Q).

loc
A combination of (32) with the embedding properties of Sobolev—Morrey spaces leads to a
precise characterization of the Morrey, BM O and Holder regularity of the solutions to (30).

Corollary 19 Under the hypotheses of Theorem 17 define sy as the least non-negative inte-
ger such that zbr’fso > landfixans € {so,...,2b — 1}. Then there is a constant C such
that:

e ifpe ( , 3t S) then DSu € LP>Cb=9r+1(Q'y and

ID*ull p.2b—s)pracr < C (Ifllpazer + lullpa0r) ;

o ifp=3—= " then D*u € BM O () and

ID*ullmo:er < € (Ifllpx07 + llullp107) ;

* ifpe (Zb 2 1) then D*u € C%%(Q') with oy = 2b — s

|D*u(x) — D’u(x )|
sup €1l p.2:r + llallpir) -
x#x' |)C —X |U ( P P )
x, x'eQ

2 This rewrites as pE(n—»x,00)whens =2b— 1.
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B—s, 2b-s 2b—s—1

Fig.2 The plane O,

n—»x
Ifso>1(i.e,2b>n)and p € (1, ﬁ) thenu € CSO*LZ]FXOH*T(Q/) and

Do lu(x) — DO la(x’
| ™) O < € (1 + ).

sup
x7x! lx —x’

x,x'eQ!

n—>x
|2b—so+1—7

Figure 2 illustrates geometrically the results of Corollary 19 with the couple (p, 1) lying in
the semistrip {(p,A): p>1, 0 <X <n}ands € {sg,...,2b — 1}. The points By on the
p-axis are By = (21;’%S 0), B = (1,0),and Ay = (1, n — 2b + s) is the intersection of the
line through (0, n) and By with the vertical line {p = 1}.

When (p, 1) belongs to the open right triangle AB Bs A then D*u € LP-CP=9)P+2(Q/) If
(p, A) lies on the open segment (Ay, B;) we have Du € BM O(2'). In particular, (p, ) €
ABBy, Ay, yields D%0u € LP-@b=50r+-(Q) while u € €0 M2 705 @) if 50 > 1.
Further on, (p, A) € (Ay,, By,) gives D0u € BM O ().

Let s € {so,...,2b — 2} and suppose (p, 1) lies in the interior of the quadrilateral
Qs = ByBy,1As11As. Then D’u € C%%(Q') whereas D*tlu e LPCb=s=Drti(qyy.
Moreover, the exponent oy is the length of the segment (C, Ay;) where C = C(p, A) is the
intersection of the line {p = 1} with the line passing through the points (p, A) and (0, n). In
particular, (p, 1) € (As+1, Bsy1) implies Dstlu e BMO(S).

Similarly, set Q»p—; for the shadowed unbounded region on the picture. Then (p’, V') €
Qap_1 gives D*~lu e C%92-1(Q') with o9;,_; equals to the length |C’Asy_y|, C' =
C'(p', 1), while D**~lu € BMO(Q') if (p', X) € (Azp—1, Bap—1)-
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6 Newtonian-type potentials

Fix the coefficients of (30) at a point xo € 2 and consider the constant coefficients opera-
tor £(xg, D) := Z|a|=2b Ay (x0)D*. Let T'(xo; x) be the fundamental matrix of £(xo, D)
(cf. [7,24]).

Take r > 0 so small that B, = {x e R": |x — xo| <7} € @, and let v € C{°(B,). Then,
employing

£(x0, D)v(x) = (L(x0, D) — £(x, D))v(x) + £(x, D)v(x)

and using standard approach (cf. [5,7,18]), we obtain a representation of v in terms of the
Newtonian-type potentials

v(x) = /B T (x0; x — y)L£v(y)dy +/ T (x0; x — y)(L(x0, D) — £(y, D))v(y)dy.

-

Taking the 2b-order derivatives and then unfreezing the coefficients by putting xo = x, we
get

D%v(x) = P.V./ DT (x; x — y)£v(y)dy

B,
=: Rq (Lv)
£ 3 p [ DTG = ) (A0 ) = A0 () DY)y
l&'|=2b v
=: €,[Ay, D]
+/ Dﬁsl"(x; Vvgdoy Lv(x) Ya: |a| =2b (33)
sn—1

where the derivatives D*T (-; -) are taken with respect to the second variable, the multiindices
B% are such that 85 := (o, ..., 51,05 — 1, 0g1, ..., ), |B5] = 2b — 1 and vy is the
s-th component of the outer normal to "~ .

Noting that each entry of the matrix D*T (x; y), |a| = 2b, is a Calderon—Zygmund kernel
(cf. [5,6]), we have

Lemma 20 Let || = |&| = 2b and Ay € VMO N L*®(Q) with VM O-modulus na,.
For each p € (1,00) and each A € (0, n) there is a constant C depending on n, m, b, §,
Aglloo: . p and A such that

[Refllp ;2 = Cliflpiia. €alAx, fllp a0 = CllAx lxalfllp e (34)

Sforallf € LP*(2). Moreover, foreach e > O there exists ro = ro(e, na,) such that ifr < rg
we have

€a[Ax, £]ll p,;8, < Cellfllp2:B, (35)

forall B, € Qand allf € LP*(B,).

Lemma 20 is a particular case of Corollaries 5 and 6 (see [19,21]).
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