Singular integral operators in Morrey spaces and interior regularity of solutions to systems of linear PDE's

Lubomira G. Softova

Received: 26 June 2007 / Accepted: 11 July 2007 / Published online: 3 August 2007 © Springer Science+Business Media, LLC 2007

Abstract We obtain boundedness in Morrey spaces of singular integral operators with Calderón-Zygmund type kernel of mixed homogeneity. These estimates are used for the study of the interior regularity of the solutions of linear elliptic/parabolic systems. The proved Po-incaré-type inequality permits to describe the Hölder, Morrey, and BMO regularity of the lower-order derivatives of the solutions.

Keywords Singular integral operators \cdot A'priori estimates \cdot Morrey spaces \cdot Elliptic and parabolic systems \cdot *VMO* coefficients \cdot Hölder regularity

AMS Subject Classification (2000) 35J45 · 35K40 · 35B45 · 35B65 · 35R05 · 42B20 · 46E35

1 Singular integral estimates in Morrey spaces

We are interested in continuity in Morrey spaces of the following integral operators

$$\Re f(x) = P.V. \int_{\mathbb{R}^n} k(x; x - y) f(y) dy$$
(1)
$$\mathfrak{C}[a, f](x) = P.V. \int_{\mathbb{R}^n} k(x; x - y) [a(y) - a(x)] f(y) dy.$$

The kernel $k(x, \xi)$ is a singular one, satisfying Calderón–Zygmund type conditions. Precisely, let $\alpha_1, \ldots, \alpha_n$ be real numbers, $\alpha_i \ge 1, \alpha = \sum_{i=1}^n \alpha_i$ and set \mathbb{S}^{n-1} for the unit sphere in \mathbb{R}^n .

Definition 1 A function $k(x; \xi)$: $\mathbb{R}^n \times \{\mathbb{R}^n \setminus \{0\}\} \to \mathbb{R}$ is a variable kernel of mixed homogeneity *if*:

L. G. Softova (🖂)

Department of Mathematics, Polytech of Bari, Via E. Orabona, 4, 70125 Bari, Italy e-mail: luba@dm.uniba.it

(i) $k(x; \cdot)$ is a Calderón-Zygmund type kernel for almost all fixed $x \in \mathbb{R}^n$, i.e. (i_a) $k(x, \cdot) \in C^{\infty}(\mathbb{R}^n \setminus \{0\});$ (i_b) $k(x, \mu^{\alpha_1}\xi_1, \dots, \mu^{\alpha_n}\xi_n) = \mu^{-\alpha}k(x, \xi)$ for each $\mu > 0;$ (i_c) $\int_{\mathbb{S}^{n-1}} |k(x, \xi)| d\sigma_{\xi} < \infty$ and $\int_{\mathbb{S}^{n-1}} k(x, \xi) d\sigma_{\xi} = 0.$ (ii) $\sup_{\xi \in \mathbb{S}^{n-1}} \left| D_{\xi}^{\beta}k(x; \xi) \right| \le C(\beta)$ for every multiindex β , independently of x.

In the special case $\alpha_i = 1$ and thus $\alpha = n$, Definition 1 gives rise to the variable Calderón-Zygmund kernel (cf. [2,3,6,18]). The mixed homogeneity condition suggests to endow \mathbb{R}^n with a metric that takes into account (i_b) . Thus, following Fabes and Riviére [10], the function $F(x, \rho) = \sum_{i=1}^{n} x_i^2 / \rho^{2\alpha_i}$, considered for a fixed $x \in \mathbb{R}^n$, is a decreasing one in $\rho > 0$ and the equation $F(x, \rho) = 1$ possesses a unique solution $\rho(x)$. It is a simple matter to check that $\rho(x - y)$ defines a distance between any two points $x, y \in \mathbb{R}^n$ ([10,Remark 1]). Further, $\overline{x} := \frac{x}{\rho(x)} := \left(\frac{x_1}{\rho(x)^{\alpha_1}}, \ldots, \frac{x_n}{\rho(x)^{\alpha_n}}\right) \in \mathbb{S}^{n-1}$. The balls with respect to $\rho(x)$, centered at the origin and of radius r are the ellipsoids

$$\mathcal{E}_r(0) = \left\{ x \in \mathbb{R}^n : \quad \frac{x_1^2}{r^{2\alpha_1}} + \dots + \frac{x_n^2}{r^{2\alpha_n}} < 1 \right\}, \quad \text{meas} \left(\mathcal{E}_r \right) \sim r^{\alpha}$$

and meas (\mathcal{E}_r) stands for the Lebesgue measure. For the sake of completeness the definitions of the spaces we are going to use are given with respect to the metric $\rho(x)$.

Definition 2 For measurable and locally integrable function $f: \mathbb{R}^n \to \mathbb{R}$ set

$$\eta_f(R) = \sup_{r \le R} \frac{1}{|\mathcal{E}_r|} \int_{\mathcal{E}_r} |f(y) - f_{\mathcal{E}_r}| \mathrm{d}y \text{ for every } R > 0.$$

where \mathcal{E}_r is any ellipsoid in \mathbb{R}^n of radius r, and $f_{\mathcal{E}_r} = |\mathcal{E}_r|^{-1} \int_{\mathcal{E}_r} f(y) dy$. Then:

- $f \in BMO$ (bounded mean oscillation, [15]) if $||f||_* := \sup_R \eta_f(R) < +\infty$. $||f||_*$ is a norm in BMO modulo constant functions under which BMO is a Banach space.
- $f \in VMO$ (vanishing mean oscillation, [22]) if $f \in BMO$ and $\lim_{R\to 0} \eta_f(R) = 0$. The quantity $\eta_f(R)$ is referred to as a VMO-modulus of f.

For a given domain $\Omega \subset \mathbb{R}^n$, the spaces $BMO(\Omega)$ and $VMO(\Omega)$ are defined in the same manner, just taking $\mathcal{E}_r \cap \Omega$ instead of \mathcal{E}_r above.

Definition 3 A measurable function $f \in L^p(\mathbb{R}^n)$, $p \in (1, +\infty)$, belongs to the Morrey space $L^{p,\lambda}(\mathbb{R}^n)$ with $\lambda \in (0, \alpha)$, if

$$\|f\|_{p,\lambda} = \left(\sup_{r>0} \frac{1}{r^{\lambda}} \int_{\mathcal{E}_r} |f(y)|^p \mathrm{d}y\right)^{1/p} < \infty,$$
(2)

where \mathcal{E}_r stands for any ellipsoid of radius r. Similarly, the space $L^{p,\lambda}(\Omega)$ and the norm $\|f\|_{p,\lambda,\Omega}$ are defined by taking $\mathcal{E}_r \cap \Omega$ in (2).

Let $f \in L^{p,\lambda}$ and $a \in BMO$. For $\varepsilon > 0$ define the operators $\mathfrak{K}_{\varepsilon}f$ and $\mathfrak{C}_{\varepsilon}[a, f]$ by

$$\mathfrak{K}_{\varepsilon}f(x) := \int_{\rho(x-y)>\varepsilon} k(x; x-y)f(y) \mathrm{d}y, \quad \mathfrak{C}_{\varepsilon}[a, f](x) := \mathfrak{K}_{\varepsilon}(af)(x) - a(x)\mathfrak{K}_{\varepsilon}f(x).$$

Our main result ensures existence and boundedness of the integrals (1).

Theorem 4 For any $f \in L^{p,\lambda}$, $p \in (1, +\infty)$, $\lambda \in (0, \alpha)$ and $a \in BMO$ we have

$$\mathfrak{K}f(x) = \lim_{\varepsilon \to 0} \mathfrak{K}_{\varepsilon} f(x), \quad \mathfrak{C}[a, f](x) = \lim_{\varepsilon \to 0} \mathfrak{C}_{\varepsilon}[a, f](x), \|\mathfrak{K}f\|_{p,\lambda} \le C \|f\|_{p,\lambda}, \quad \|\mathfrak{C}[a, f]\|_{p,\lambda} \le C \|a\|_* \|f\|_{p,\lambda}.$$
(3)

Corollary 5 Let Ω be an open subset of \mathbb{R}^n and $k(x; \xi): \Omega \times (\mathbb{R}^n \setminus \{0\}) \to \mathbb{R}$, $a \in BMO(\Omega)$. Then, for any $f \in L^{p,\lambda}(\Omega)$ and almost all $x \in \Omega$ the integrals $\mathfrak{K}f, \mathfrak{C}[a, f] \in L^{p,\lambda}(\Omega)$ and there is a constant $C = C(n, p, \lambda, \alpha, \Omega, k)$ such that

$$\|\mathfrak{K}f\|_{p,\lambda,\Omega} \le C \|f\|_{p,\lambda,\Omega}, \quad \|\mathfrak{C}[a,f]\|_{p,\lambda,\Omega} \le C \|a\|_* \|f\|_{p,\lambda,\Omega}.$$

$$\tag{4}$$

Corollary 6 In addition to the assumptions of Corollary 5, let $a \in VMO(\Omega)$ with VMOmodulus η_a . Then, for each $\varepsilon > 0$ there is $r_0 = (\varepsilon, \eta_a) > 0$ such that for any $r \in (0, r_0)$ and any ellipsoid $\mathcal{E}_r \subset \Omega$ one has

$$\|\mathfrak{C}[a,f]\|_{p,\lambda,\mathcal{E}_r} \le C\varepsilon \|f\|_{p,\lambda,\mathcal{E}_r} \quad \forall f \in L^{p,\lambda}(\mathcal{E}_r).$$
(5)

2 Interior regularity for parabolic systems with discontinuous data

Let Ω be a domain in \mathbb{R}^n , $n \ge 2$ and define $Q = \Omega \times (0, T)$ with T > 0. We consider the following linear system of order $2b, b \ge 1$

$$\mathfrak{L}\mathbf{u} := D_t \mathbf{u}(x,t) - \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}(x,t) D^{\alpha} \mathbf{u}(x,t) = \mathbf{f}(x,t)$$
(6)

for the unknown vector-valued function $\mathbf{u}: Q \to \mathbb{R}^m$ given by the transpose $\mathbf{u}(x,t) = (u_1(x,t), \ldots, u_m(x,t))^{\mathrm{T}}$, $\mathbf{f} = (f_1, \ldots, f_m)^{\mathrm{T}}$, and where $\mathbf{A}_{\alpha}(x,t)$ stands for the $m \times m$ matrix $\{a_{\alpha}^{kj}(x,t)\}_{k,j=1}^m$ of the measurable coefficients $a_{\alpha}^{kj}: Q \to \mathbb{R}$. Here, $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multiindex of length $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $D_t := \partial/\partial t$ and $D^{\alpha} \equiv D_x^{\alpha} := D_1^{\alpha_1} \ldots D_n^{\alpha_n}$ with $D_i := \partial/\partial x_i$. Further, $D^{\alpha}\mathbf{u} = (D^{\alpha}u_1, \ldots, D^{\alpha}u_m)^{\mathrm{T}}$ and $D^s\mathbf{u}$ substitutes *any* derivative $D^{\alpha}\mathbf{u}$ with $|\alpha| = s \in \mathbb{N}$.

We assume that the system (6) is uniformly parabolic in the sense of Petrovskii (see [8,9,12,17,24]). Namely, the *p*-roots of the *m*-degree polynomial

$$\det\left\{p\operatorname{\mathbf{Id}}_{m}-\sum_{|\alpha|=2b}\mathbf{A}_{\alpha}(x,t)(i\xi)^{\alpha}\right\}=0\quad(i=\sqrt{-1})$$
(7)

satisfy, for some $\delta > 0$ and all s = 1, ..., m, the inequality

$$\operatorname{Re} p_{s}(x, t, \xi) \leq -\delta |\xi|^{2b} \quad \text{for a.a.} \ (x, t) \in Q, \ \forall \xi \in \mathbb{R}^{n}.$$

$$(8)$$

Here \mathbf{Id}_m is the identity $m \times m$ matrix, $\xi^{\alpha} := \xi_1^{\alpha_1} \xi_2^{\alpha_2} \cdots \xi_n^{\alpha_n}$ and $|\cdot|$ indicates the Euclidean norm in \mathbb{R}^n . For fixed $(x, t) \in Q$ and $\xi \in \mathbb{R}^n$, $p_s(x, t, \xi)$ are nothing else than the eigenvalues of the $m \times m$ matrix $(-1)^b \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}(x, t)\xi^{\alpha}$, and the parabolicity condition (8) means these have negative real part.

Our goal is to obtain interior Hölder regularity of the strong solutions to (6) as a byproduct of *a priori* estimates in Sobolev and Sobolev–Morrey spaces. Let us recall the definitions of these functional classes.

Definition 7 The parabolic Sobolev space $W_p^{2b,1}(Q)$, $p \in (1, +\infty)$, is the collection of $L^p(Q)$ functions $u: Q \to \mathbb{R}$ all of which distribution derivatives $D_t u$ and $D_x^{\alpha} u$ with $|\alpha| \le 2b$, belong to $L^p(Q)$. The norm in $W_p^{2b,1}(Q)$ is

$$\|u\|_{W_{p}^{2b,1}(Q)} := \|D_{t}u\|_{p;Q} + \sum_{s=0}^{2b} \|D^{s}u\|_{p;Q}, \quad \|\mathbf{u}\|_{p;Q} := \sum_{k=1}^{m} \|u_{k}\|_{p;Q},$$

When dealing with localized versions of $W_p^{2b,1}$ we always mean *local in spatial variables x* and global in time, that is, $u \in W_{p,loc}^{2b,1}(Q)$ if $u \in W_p^{2b,1}(\Omega' \times (0, T))$ for any $\Omega' \Subset \Omega$.

Let $p \in (1, +\infty)$ and $\lambda \in (0, n + 2b)$. The Sobolev–Morrey space $W_{p,\lambda}^{2b,1}(Q)$ consists of all functions $u \in W_p^{2b,1}(Q)$ with generalized derivatives $D_t u$ and $D_x^{\alpha} u$, $|\alpha| \le 2b$, belonging to $L^{p,\lambda}(Q)$ and the norm is given by

$$\|u\|_{W^{2b,1}_{p,\lambda}(Q)} := \|D_t u\|_{p,\lambda;Q} + \sum_{s=0}^{2b} \sum_{|\alpha|=s} \|D^{\alpha}_{x} u\|_{p,\lambda;Q}.$$

Endow $\mathbb{R}^{n+1} = \mathbb{R}_x^n \times \mathbb{R}_t$ with the *parabolic* metric $\varrho(x, t) = \max\{|x|, |t|^{1/2b}\}$. We shall employ the system of *parabolic cylinders*

$$C_r := B_r(x_0) \times (t_0 - r^{2b}, t_0), \quad B_r(x_0) := \left\{ x \in \mathbb{R}^n : |x - x_0| < r \right\}$$
(9)

with meas (\mathcal{C}_r) comparable to r^{n+2b} . It is obvious that the metric $\varrho(x, t)$ is equivalent to $\rho(x, t)$. In fact, for any ellipsoid \mathcal{E} there exist cylinders \underline{C} and \overline{C} of measures equivalent to meas (\mathcal{E}) and such that $\underline{C} \subset \mathcal{E} \subset \overline{C}$. Our main results are as follows.

Theorem 8 Suppose (8), $1 < q \le p < +\infty$, $a_{\alpha}^{kj} \in VMO \cap L^{\infty}(Q)$, $\mathbf{f} \in L^p_{loc}(Q)$ and let $\mathbf{u} \in W^{2b,1}_{q,loc}(Q)$ be a strong solution of (6) such that $\mathbf{u}(x, 0) = \mathbf{0}$.

Then the operator \mathfrak{L} improves integrability, that is, $\mathbf{u} \in W^{2b,1}_{p,\text{loc}}(Q)$, and for any $Q' = \Omega' \times (0, T)$, $Q'' = \Omega'' \times (0, T)$, $\Omega' \Subset \Omega'' \Subset \Omega$, there is a constant C depending on n, p, m, b, δ , $\|a^{kj}_{\alpha}\|_{\infty;Q}$, $\eta_{a^{kj}_{\alpha}}$ and dist $(\Omega', \partial \Omega'')$ such that

$$\|\mathbf{u}\|_{W_{p}^{2b,1}(Q')} \le C \left(\|\mathbf{f}\|_{p;Q''} + \|\mathbf{u}\|_{p;Q''} \right).$$
⁽¹⁰⁾

Since $W_p^{2b,1}(Q')$ is contained into the Besov space $B_{\infty,\infty}^{\sigma,\sigma/2b}(Q')$ with $\sigma = 2b - \frac{n+2b}{p} > 0$ and $B_{\infty,\infty}^{\sigma,\sigma/2b}(Q')$ coincides with the Hölder space $C^{\sigma,\sigma/2b}(Q')$ for *non-integer* σ (see [13,14,17,25, Theorems 2.5, 2.7]), we get

Corollary 9 In addition to the hypotheses of Theorem 8, suppose $p > \frac{n+2b}{2b}$. Then $\mathbf{u} \in L^{\infty}(Q')$ and there is a constant C such that

$$\|\mathbf{u}\|_{\infty;Q'} \leq C \left(\|\mathbf{f}\|_{p;Q''} + \|\mathbf{u}\|_{p;Q''} \right).$$

Moreover, the x-derivatives of **u** are Hölder continuous for large values of p. Precisely,

• if $p \in \left(\frac{n+2b}{2b-s}, \frac{n+2b}{2b-s-1}\right)$ for a fixed $s \in \{0, 1, \dots, 2b-2\}$ then $D^s \mathbf{u} \in C^{\sigma_s, \sigma_s/2b}(Q')$ with $\sigma_s = 2b - s - \frac{n+2b}{p}$;

• if
$$p \in (n+2b, +\infty)$$
 then $D^{2b-1}\mathbf{u} \in C^{\sigma_{2b-1}, \sigma_{2b-1}/2b}(Q')$ with $\sigma_{2b-1} = 1 - \frac{n+2b}{p}$

and in all cases

$$\sup_{\substack{(x,t)\neq(x',t')\\(x,t),\ (x',t')\in Q'}}\frac{\left|D^{s}\mathbf{u}(x,t)-D^{s}\mathbf{u}(x',t')\right|}{\left(|x-x'|+|t-t'|^{1/2b}\right)^{\sigma_{s}}} \leq C\left(\|\mathbf{f}\|_{p;Q''}+\|\mathbf{u}\|_{p;Q''}\right)$$

for $s \in \{0, 1, \dots, 2b - 1\}$.

Our next result provides improving-of-integrability property of \mathfrak{L} and *a priori* estimates in Sobolev–Morrey spaces for solutions of (6) with Morrey right-hand side.

Theorem 10 Suppose (8), $1 < q \le p < +\infty$, $\lambda \in (0, n + 2b)$, $a_{\alpha}^{kj} \in VMO \cap L^{\infty}(Q)$, $\mathbf{f} \in L_{\text{loc}}^{p,\lambda}(Q)$ and let $\mathbf{u} \in W_{q,\text{loc}}^{2b,1}(Q)$ be a strong solution of (6) such that $\mathbf{u}(x, 0) = \mathbf{0}$. Then $\mathbf{u} \in W_{p,\lambda,\text{loc}}^{2b,1}(Q)$ and

$$\|\mathbf{u}\|_{W^{2b,1}_{p,\lambda}(Q')} \le C\left(\|\mathbf{f}\|_{p,\lambda;Q''} + \|\mathbf{u}\|_{p,\lambda;Q''}\right)$$
(11)

with a constant *C* depending on the quantities listed in Theorem 8 and on λ in addition.

As consequence of (11) we obtain precise characterization of Morrey, *BMO* and Hölder regularity of the derivatives $D^s \mathbf{u}$ with $s \in \{0, 1, ..., 2b - 1\}$. Precisely,

Corollary 11 Under the hypotheses of Theorem 10 fix an $s \in \{0, 1, ..., 2b - 1\}$. Then there is a constant C such that

• if $p \in \left(1, \frac{n+2b-\lambda}{2b-s}\right)$ then $D^{s}\mathbf{u} \in L^{p,(2b-s)p+\lambda}(Q')$ and $\|D^{s}\mathbf{u}\|_{p,(2b-s)p+\lambda;Q'} \leq C\left(\|\mathbf{f}\|_{p,\lambda;Q''} + \|\mathbf{u}\|_{p,\lambda;Q''}\right);$

• *if*
$$p = \frac{n+2b-\lambda}{2b-s}$$
 then $D^s \mathbf{u} \in BMO(Q')$ *and*

$$\|D^{s}\mathbf{u}\|_{*;Q'} \leq C\left(\|\mathbf{f}\|_{p,\lambda;Q''} + \|\mathbf{u}\|_{p,\lambda;Q''}\right);$$

• if
$$p \in \left(\frac{n+2b-\lambda}{2b-s}, \frac{n+2b-\lambda}{2b-s-1}\right)^1$$
 then $D^s \mathbf{u} \in C^{\sigma_s, \sigma_s/2b}(Q')$ with $\sigma_s = 2b - s - \frac{n+2b-\lambda}{p}$ and

$$\sup_{\substack{(x,t)\neq(x',t')\\(x,t),\ (x',t')\in Q'}}\frac{\left|D^{s}\mathbf{u}(x,t)-D^{s}\mathbf{u}(x',t')\right|}{\left(|x-x'|+|t-t'|^{1/2b}\right)^{\sigma_{s}}} \leq C\left(\|\mathbf{f}\|_{p,\lambda;Q''}+\|\mathbf{u}\|_{p,\lambda;Q''}\right)$$

A simple geometric interpretation of the results of Corollaries 9 and 11 is proposed on Fig. 1. A typical situation is considered for the couple (p, λ) lying in the semistrip $\{(p, \lambda): p > 1, 0 < \lambda < n + 2b\}$ and $s \in \{0, 1, \dots, 2b - 1\}$. The points B_s on the *p*-axis are simply $\binom{n+2b}{2b-s}, 0$, B = (1, 0), and $A_s = (1, n + s)$ is the intersection of the line $\{p = 1\}$ with the line passing through (0, n + 2b) and B_s . If (p, λ) belongs to the open right triangle $\Delta BB_s A_s$ then $D^s \mathbf{u} \in L^{p,(2b-s)p+\lambda}(Q')$. In particular, $(p, \lambda) \in \Delta BB_0A_0$ yields $\mathbf{u} \in L^{p,2bp+\lambda}(Q')$ whereas $\mathbf{u} \in BMO(Q')$ if (p, λ) lies on the open line segment (A_0, B_0) . Let $s \in \{0, \dots, 2b - 2\}$ and take (p, λ) in the interior of $R_s := B_s B_{s+1}A_{s+1}A_s$. Then the spatial derivatives $D^s \mathbf{u}$ are Hölder continuous with exponent σ_s given by Corollary 11, while $D^{s+1}\mathbf{u} \in L^{p,(2b-s-1)p+\lambda}(Q')$. Moreover, σ_s is the length $|CA_s|$ of the segment (C, A_s) where $C = C(p, \lambda)$ is the intersection of the vertical line $\{p = 1\}$ with the line connecting the points (p, λ) and (0, n + 2b). If $(p, \lambda) \in (A_s, B_s)$ we have $D^s \mathbf{u} \in BMO$,

¹ In the case s = 2b - 1 this inclusion rewrites naturally as $p \in (n + 2b - \lambda, +\infty)$.

Fig. 1 The plane $O_{p,\lambda}$

whereas $(p, \lambda) \in (A_{s+1}, B_{s+1})$ implies $D^{s+1}\mathbf{u} \in BMO$. The situation is similar for the derivatives $D^{2b-1}\mathbf{u}$ as well (i.e., s = 2b - 1) but R_{2b-1} is now the shadowed *unbounded* region on the picture. Thus, $(p', \lambda') \in R_{2b-1}$ gives that $D^{2b-1}\mathbf{u}$ are Hölder continuous with exponent $\sigma_{2b-1} = |C'A_{2b-1}|, C' = C'(p', \lambda')$, while $(p', \lambda') \in (A_{2b-1}, B_{2b-1})$ yields $D^{2b-1}\mathbf{u} \in BMO$. To interpret the statement of Corollary 9, we simply have to consider points on the *p*-axis with p > 1. This way, $p > \frac{n+2b}{2b}$ implies $\mathbf{u} \in L^{\infty}(Q')$ whereas $D^s\mathbf{u}$ are Hölder continuous with exponent $\sigma_s = 2b - s - \frac{n+2b}{p}$ if $(p, 0) \in (B_s, B_{s+1})$ (with the setting $B_{2b} := +\infty$). We will derive in Sect. 4 an improvement of Corollary 9 which, loosely speaking, sounds like Corollary 11 with $\lambda = 0$. Thus (cf. Corollary 16), $D^s\mathbf{u} \in L^{p,(2b-s)p}(Q')$ if $(p, 0) \in (B, B_s)$ while $(p, 0) \equiv B_s$ gives $D^s\mathbf{u} \in VMO(Q')$.

3 Gaussian-type potentials

To obtain an explicit formula for the solution of the system (6), we fix a_{α}^{kj} 's at some interior point $(x_0, t_0) \in Q$, set $\mathbf{A}_{\alpha}^0 := \mathbf{A}_{\alpha}(x_0, t_0) = \left\{a_{\alpha}^{kj}(x_0, t_0)\right\}_{k,j=1}^m$, and consider the constant coefficients operator

$$\mathfrak{L}_0 := \mathbf{Id}_m D_t - \sum_{|\alpha|=2b} \mathbf{A}^0_{\alpha} D^{\alpha}.$$

🖄 Springer

It is known (see [24]) that the fundamental matrix $\Gamma_0(x, t) = \left\{\Gamma_0^{kj}(x, t)\right\}_{k,j=1}^m$ of \mathfrak{L}_0 has entries

$$\Gamma_0^{kj}(x,t) = L_{jk}(D_t, D^{\alpha})\widetilde{\Gamma}_0(x,t),$$

where $\{L_{jk}(D_t, D^{\alpha})\}_{j,k=1}^m$ is the *cofactor matrix* of $\{\mathbf{Id}_m D_t - \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}^0 D^{\alpha}\} = \{\delta^{jk} D_t - \sum_{|\alpha|=2b} a_{\alpha}^{jk}(x_0, t_0) D^{\alpha}\}_{j,k=1}^m$, and $\widetilde{\Gamma}_0(x, t)$ is the fundamental solution of the *parabolic equation*

$$\det\left\{\mathbf{Id}_m D_t - \sum_{|\alpha|=2b} \mathbf{A}^0_{\alpha} D^{\alpha}\right\} u = 0.$$
(12)

(Note that L_{jk} is either a homogeneous differential operator of order 2b(m-1) or the operator of multiplication by 0). Applying Fourier transform in x and Laplace transform in t, it is easy to get

$$\widetilde{\Gamma}_{0}(x,t) = \frac{1}{(2\pi)^{n} 2\pi i} \int_{\mathbb{R}^{n}} e^{i(x\cdot\xi)} d\xi \int_{\mathfrak{C}(\xi)} \frac{e^{pt}}{\det\left\{p \operatorname{Id}_{m} - \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}^{0}(i\xi)^{\alpha}\right\}} dp, \quad (13)$$

where $\mathfrak{C}(\xi)$ is a contour in the complex *p*-plane enclosing all the roots of (7) and therefore, in view of (8), could be taken to lie in the left half-plane. Thus (cf. [9]), the fundamental matrix $\Gamma_0(x, t)$ of \mathfrak{L}_0 after a transformation of variables is given by

$$\Gamma_0(x,t) = \begin{cases} \frac{1}{(2\pi)^n t^{n/2b}} \int_{\mathbb{R}^n} \exp\left\{i(xt^{-1/2b} \cdot \xi) + \sum_{|\alpha|=2b} \mathbf{A}^0_{\alpha}(i\xi)^{\alpha}\right\} d\xi & \text{for } t > 0, \\ 0 & \text{for } t \le 0. \end{cases}$$

In other words, $\Gamma_0(x, t)$ possesses properties analogous to these of the Gauss kernel (see [8,9,11,12,17,18,24]). Precisely,

- (\mathcal{P}_1) Regularity: $\Gamma_0 \in C^{\infty}(\mathbb{R}^{n+1} \setminus \{0\}).$
- (\mathcal{P}_2) *Mixed homogeneity:* for any $\mu > 0$ and any multiindex β it holds

$$\Gamma_0(\mu x, \mu^{2b} t) = \mu^{-n} \Gamma_0(x, t), \quad D^\beta \Gamma_0(\mu x, \mu^{2b} t) = \mu^{-n-|\beta|} D^\beta \Gamma_0(x, t).$$

 (\mathcal{P}_3) Vanishing property on the unit sphere \mathbb{S}^n :

$$\int_{\mathbb{S}^n} D^{\alpha} \Gamma_0(\overline{x}, \overline{t}) d\sigma_{(\overline{x}, \overline{t})} = \mathbf{0} \text{ for any } \alpha, \ |\alpha| = 2b.$$

To show this property define the sets $A = \{(x, t): t > 0, 1 < \rho(x, t) < 2\}$, $B = \{(x, t): 1 < t < 2^{2b}\}$, $B_k = \{(x, t): 0 < t < k^{2b}, \rho(x, t) > k\}$, k = 1, 2 (cf. [10, Appendix]). Straightforward calculations based on the properties of the metric, (\mathcal{P}_2) and $A = (B \cup B_1) \setminus B_2$ yield

$$\int_{A} D^{\alpha} \Gamma_{0}(x,t) dx dt = \int_{A} \left(\rho(x,t) \right)^{-n-2b} D^{\alpha} \Gamma_{0}(\overline{x},\overline{t}) dx dt$$
$$= \int_{1}^{2} \frac{d\rho}{\rho} \int_{\mathbb{S}^{n}} D^{\alpha} \Gamma_{0}(\overline{x},\overline{t}) d\sigma_{(\overline{x},\overline{t})} = \log 2 \int_{\mathbb{S}^{n}} D^{\alpha} \Gamma_{0}(\overline{x},\overline{t}) d\sigma_{(\overline{x},\overline{t})}.$$

Deringer

On the other hand,

$$\int_{B_2} D^{\alpha} \Gamma_0(x, t) dx dt = \frac{1}{2^{n+2b}} \int_{B_2} D^{\alpha} \Gamma_0\left(\frac{x}{2}, \frac{t}{2^{2b}}\right) dx dt = \int_{B_1} D^{\alpha} \Gamma_0(x, t) dx dt,$$
$$\int_B D^{\alpha} \Gamma_0(x, t) dx dt = \int_B \frac{1}{t^{\frac{n}{2b}+1}} D^{\alpha} \Gamma_0\left(\frac{x}{t^{\frac{1}{2b}}}, 1\right) dx dt = \int_1^{2^{2b}} \frac{dt}{t} \int_{\mathbb{R}^n} D^{\alpha} \Gamma_0(x, 1) dx dt$$

which gives

$$\int_{A} D^{\alpha} \Gamma_{0}(x, t) dx dt = \int_{B} \dots + \int_{B_{1}} \dots - \int_{B_{2}} \dots = \int_{B} D^{\alpha} \Gamma_{0}(x, t) dx dt$$
$$= 2b \log 2 \int_{\mathbb{R}^{n}} D^{\alpha} \Gamma_{0}(x, 1) dx = \mathbf{0}.$$

The last equality follows from the vanishing property on hyperplanes (cf. [24]) possessed by $\Gamma_0(x, t)$ for any t > 0:

$$\int_{\mathbb{R}^n} D_t^s D_x^\beta \Gamma_0(x,t) dx = \begin{cases} \mathbf{Id}_m & \text{if } s + |\beta| = 0, \\ \mathbf{0} & \text{if } s + |\beta| > 0. \end{cases}$$

 (\mathcal{P}_4) Boundedness of the derivatives:

$$\sup_{(\bar{x},\bar{t})\in\mathbb{S}^n} |D^{\beta} \Gamma_0(\bar{x},\bar{t})| \le C(n,\beta,\max_{\alpha} |\mathbf{A}^0_{\alpha}|) \quad \forall \text{ multiindex } \beta.$$

 (\mathcal{P}_5) Integrability:

$$D^{\beta}\Gamma_0 \in L^1_{\text{loc}}(\mathbb{R}^{n+1}) \text{ for } |\beta| < 2b, \quad D^{\alpha}\Gamma_0 \notin L^1_{\text{loc}}(\mathbb{R}^{n+1}) \text{ for } |\alpha| = 2b.$$

Let $\mathbf{v} \in C^{\infty}(\mathbb{R}^{n+1})$ be compactly supported in x, $\mathbf{v}(x, 0) = \mathbf{0}$. Take $(x_0, t_0) \in \text{supp } \mathbf{v}$ and consider the system

$$\mathfrak{L}_{0}\mathbf{v} = \sum_{|\alpha|=2b} \left(\mathbf{A}_{\alpha}(x,t) - \mathbf{A}_{\alpha}(x_{0},t_{0}) \right) D^{\alpha}\mathbf{v} + \mathfrak{L}\mathbf{v}(x,t) =: \mathbf{g}(x,t).$$
(14)

The solution v can be written as a Gaussian-type potential

$$\mathbf{v}(x,t) = \int_{\mathbb{R}^{n+1}} \Gamma_0(x-y,t-\tau) \mathbf{g}(y,\tau) \mathrm{d}y \mathrm{d}\tau.$$
(15)

The higher order derivatives in x have the form

$$D^{\alpha}\mathbf{v}(x,t) = P.V. \int_{\mathbb{R}^{n+1}} D^{\alpha}\mathbf{\Gamma}_{0}(x-y,t-\tau)\mathbf{g}(y,\tau)dyd\tau + \int_{\mathbb{S}^{n}} D^{\beta^{s}}\mathbf{\Gamma}_{0}(y,\tau)\nu_{s}d\sigma_{(y,\tau)}\mathbf{g}(x,t), \quad |\alpha| = 2b,$$
(16)

Deringer

where $\Gamma_0(x - y, t - \tau) = \Gamma(x_0, t_0; x - y, t - \tau)$ and the dependence on (x_0, t_0) is through \mathbf{A}^0_{α} . Since the choice of (x_0, t_0) is free, we set $(x_0, t_0) = (x, t)$, thus

$$D^{\alpha}\mathbf{v}(x,t) = P.V. \int_{\mathbb{R}^{n+1}} D^{\alpha}\mathbf{\Gamma}(x,t;x-y,t-\tau)\mathfrak{L}\mathbf{v}(y,\tau)dyd\tau + \sum_{|\alpha'|=2b} P.V. \int_{\mathbb{R}^{n+1}} D^{\alpha}\mathbf{\Gamma}(x,t;x-y,t-\tau) \times (\mathbf{A}_{\alpha'}(y,\tau) - \mathbf{A}_{\alpha'}(x,t)) D_{y}^{\alpha'}\mathbf{v}(y,\tau)dyd\tau + \int_{\mathbb{S}^{n}} D^{\beta^{s}}\mathbf{\Gamma}(x,t;y,\tau)\nu_{s}d\sigma_{(y,\tau)}\mathfrak{L}\mathbf{v}(x,t) = :\mathfrak{K}_{\alpha}(\mathfrak{L}\mathbf{v}) + \sum_{|\alpha'|=2b} \mathfrak{C}_{\alpha}[\mathbf{A}_{\alpha'}, D^{\alpha'}\mathbf{v}] + \mathbf{F}(x,t)\mathfrak{L}\mathbf{v}(x,t), \quad \forall \alpha : |\alpha| = 2b$$

$$(17)$$

where the derivatives $D^{\alpha} \Gamma(\cdot, \cdot; \cdot, \cdot)$ are taken with respect to the third variable.

Denote $\mathbf{k}(x, t; y, \tau) := D_y^{\alpha} \mathbf{\Gamma}(x, t; y, \tau)$ with $|\alpha| = 2b$. Each entry of the $m \times m$ matrix **k** is a Calderón-Zygmund kernel in the sense of the Definition 1. In fact, (i_a) and (i_b) are just properties (\mathcal{P}_1) and (\mathcal{P}_2) of the fundamental solution, while i_c) and ii) follow from (\mathcal{P}_3) and (\mathcal{P}_4) . Finally, (\mathcal{P}_5) shows that $\mathbf{\hat{\kappa}}_{\alpha}$ and $\mathbf{\hat{c}}_{\alpha}$ are really singular integral operators. For what concerns their boundedness in Lebesgue and Morrey spaces, we have

Lemma 12 Let $|\alpha| = |\alpha'| = 2b$ and $\mathbf{A}_{\alpha} \in L^{\infty}(Q)$. For each $p \in (1, +\infty)$ there exists a constant $C = C(n, m, b, \delta, \|\mathbf{A}_{\alpha}\|_{\infty; O}, p)$ such that for any $\mathbf{f} \in L^{p}(Q)$

$$\|\mathbf{\mathfrak{K}}_{\alpha}\mathbf{f}\|_{p;Q} \le C\|\mathbf{f}\|_{p;Q}, \quad \|\mathbf{\mathfrak{C}}_{\alpha}[\mathbf{A}_{\alpha'},\mathbf{f}]\|_{p;Q} \le C\|\mathbf{A}_{\alpha'}\|_{*;Q}\|\mathbf{f}\|_{p;Q}.$$
(18)

For each $p \in (1, +\infty)$ and each $\lambda \in (0, n + 2b)$ there is a constant *C* depending on *n*, *m*, *b*, δ , $\|\mathbf{A}_{\alpha}\|_{\infty;Q}$, *p* and λ such that for any $\mathbf{f} \in L^{p,\lambda}(Q)$

$$\|\mathbf{\mathfrak{K}}_{\alpha}\mathbf{f}\|_{p,\lambda;Q} \le C\|\mathbf{f}\|_{p,\lambda;Q}, \quad \|\mathbf{\mathfrak{C}}_{\alpha}[\mathbf{A}_{\alpha'},\mathbf{f}]\|_{p,\lambda;Q} \le C\|\mathbf{A}_{\alpha'}\|_{*;Q}\|\mathbf{f}\|_{p,\lambda;Q}.$$
(19)

Moreover, let $\mathbf{A}_{\alpha} \in VMO(Q) \cap L^{\infty}(Q)$ with VMO-modulus $\eta_{\mathbf{A}_{\alpha}}$. Then for each $\varepsilon > 0$ there exists $r_0 = r_0(\varepsilon, \eta_{\mathbf{A}_{\alpha}})$ such that if $r < r_0$ we have

$$\|\mathfrak{C}_{\alpha}[\mathbf{A}_{\alpha'},\mathbf{f}]\|_{p;\mathcal{C}_r} \leq C\varepsilon \|\mathbf{f}\|_{p;\mathcal{C}_r} \quad \forall \, \mathbf{f} \in L^p(\mathcal{C}_r),$$
(20)

$$\|\mathbf{\mathfrak{C}}_{\alpha}[\mathbf{A}_{\alpha'},\mathbf{f}]\|_{p,\lambda;\mathcal{C}_r} \le C\varepsilon \|\mathbf{f}\|_{p,\lambda;\mathcal{C}_r} \quad \forall \, \mathbf{f} \in L^{p,\lambda}(\mathcal{C}_r)$$
(21)

for any parabolic cylinder $C_r \subset Q$.

The first bound in (18) is proved by Fabes and Riviére [10, Theorem 1] for general kernels of mixed homogeneity. The second one is obtained in [1, Theorem 2.12] in the case b = 1. The passage from *constant* to *variable* kernels makes use of Calderón-Zygmund's approach [2,3] of expansion into spherical harmonics and leads to (18) for b > 1 as well. The estimates (19) follow from Theorem 4 and Corollary 5 (cf. [19]). The estimates (20) and (21) follow from (18) and (19) on the base of $A_{\alpha} \in VMO$ (see [6, Theorem 2.13],[19, Corollary 2.8], [23, Theorem 3.7]).

Remark 13 Employing density arguments and (18) it is easily seen that the representation formula (17) still holds true (almost everywhere) for *compactly supported in x functions* $\mathbf{v} \in W_p^{2b,1}$ such that $\mathbf{v}(x, 0) = \mathbf{0}$.

4 Sketch of the proofs

Proof (Theorem 8) We shall prove (10) first, supposing $\mathbf{u} \in W_{p,\text{loc}}^{2b,1}(Q)$. Without loss of generality, extend $\mathbf{u}(x, t)$ as **0** for t < 0, fix $(x_0, t_0) \in \text{supp } \mathbf{u}$ and consider the parabolic cylinder $C_r(x_0, t_0)$. Let $\mathbf{v} \in W_p^{2b,1}(C_r)$ with $\mathbf{v}(x, t_0 - r^{2b}) = \mathbf{0}$. In view of Remark 13, (17) and Lemma 12, for each $\varepsilon > 0$ there is $r_0(\varepsilon, \eta_{\mathbf{A}_q})$ such that

$$\|D^{2b}\mathbf{v}\|_{p;\mathcal{C}_r} \leq C\left(\|\mathfrak{L}\mathbf{v}\|_{p;\mathcal{C}_r} + \varepsilon\|D^{2b}\mathbf{v}\|_{p;\mathcal{C}_r}\right)$$

whenever $r < r_0$. Choosing ε small enough we obtain

$$\|D^{2b}\mathbf{v}\|_{p;\mathcal{C}_r} \le C \|\mathfrak{L}\mathbf{v}\|_{p;\mathcal{C}_r}.$$
(22)

Let $r \in (0, r_0), \theta \in (0, 1), \theta' = \theta(3 - \theta)/2 > \theta$ and define the cut-off function

$$\varphi(x,t) := \varphi_1(x)\varphi_2(t), \quad 0 \le \varphi \le 1, \tag{23}$$

with $\varphi_1 \in C_0^{\infty}(B_r(x_0))$ and $\varphi_2 \in C^{\infty}(\mathbb{R})$ such that

$$\varphi_1(x) = \begin{cases} 1 & x \in B_{\theta r}(x_0) \\ 0 & x \notin B_{\theta r}(x_0) \end{cases} \qquad \qquad \varphi_2(t) = \begin{cases} 1 & t \in (t_0 - (\theta r)^{2b}, t_0] \\ 0 & t < t_0 - (\theta r)^{2b}. \end{cases}$$

Since $\theta' - \theta = \theta(1 - \theta)/2$, it is clear that $|D_x^s \varphi| \le C(s)[\theta(1 - \theta)r]^{-s}$ for any $1 \le s \le 2b$ and $|D_t \varphi| \le C[\theta(1 - \theta)r]^{-2b}$.

Defining $\mathbf{v} = \varphi \mathbf{u}$, calculating $\mathfrak{L} \mathbf{v} = (\mathfrak{L} v_1, \dots, \mathfrak{L} v_m)^{\mathrm{T}}$, applying (22) to \mathbf{v} and letting $\| \cdot \|_{p;\theta r} := \| \cdot \|_{p;C_{\theta r}}$ for the sake of simplicity, we get into

$$\begin{split} \|D^{2b}\mathbf{u}\|_{p;\theta r} &\leq \|D^{2b}\mathbf{v}\|_{p;\theta' r} \leq C \|\mathfrak{L}\mathbf{v}\|_{p;\theta' r} \\ &\leq C \Bigg(\|\mathbf{f}\|_{p;\theta' r} + \sum_{s=1}^{2b-1} \frac{\|D^{2b-s}\mathbf{u}\|_{p;\theta' r}}{[\theta(1-\theta)r]^s} + \frac{\|\mathbf{u}\|_{p;\theta' r}}{[\theta(1-\theta)r]^{2b}}\Bigg). \end{split}$$

Defining the seminorms

$$\Theta_s := \sup_{0 < \theta < 1} [\theta(1-\theta)r]^s \|D^s \mathbf{u}\|_{p;\theta r} \quad \forall s \in \{0, \dots, 2b\},$$

the last inequality rewrites as

$$\Theta_{2b} \le C \left(r^{2b} \| \mathbf{f} \|_{p;r} + \sum_{s=1}^{2b-1} \Theta_s + \Theta_0 \right).$$
(24)

Proposition 14 (Interpolation inequality) *There exists a constant C depending on n, m, b, p and s, but independent of r, and such that*

$$\Theta_s \leq \varepsilon \Theta_{2b} + \frac{C}{\varepsilon^{s/(2b-s)}} \Theta_0 \text{ for any } \varepsilon \in (0,2).$$

Fixing $\theta = 1/2$, taking suitable $\varepsilon \in (0, 2)$ and interpolating the intermediate seminorms in (24), we obtain the following *Caccioppoli-type* estimate

$$\|D^{2b}\mathbf{u}\|_{p;r/2} \le C\left(\|\mathbf{f}\|_{p;r} + Cr^{-2b}\|\mathbf{u}\|_{p;r}\right)$$
(25)

which holds also for $||D_t \mathbf{u}||_{p;r/2}$ in view of the parabolic structure of (6). Therefore, the desired estimate (10) follows from (25) after choosing $r < \text{dist}(\Omega', \partial \Omega'')$ and employing a finite covering of Q' by cylinders $C_{r/2}$.

Turning back to Theorem 8, we use homotopy arguments in order to prove integrability property of \mathfrak{L} . For any couple of multiindices α , $\alpha' \in \mathfrak{A} := \{\alpha \in \mathbb{N}^n : |\alpha| = 2b\}$ and any $\mathbf{g} \in L^{\omega}(\mathcal{C}_r), \omega \in (1, \infty)$ define the operator $\mathbf{U}_{\alpha,\alpha'} : L^{\omega}(\mathcal{C}_r) \to L^{\omega}(\mathcal{C}_r)$ as

$$\mathbf{U}_{\alpha,\alpha'}\mathbf{g}(x,t) = P.V. \int_{\mathcal{C}_r} D^{\alpha} \mathbf{\Gamma}(x,t;x-y,t-\tau) \big(\mathbf{A}_{\alpha'}(y,\tau) - \mathbf{A}_{\alpha'}(x,t) \big) \mathbf{g}(y,\tau) \mathrm{d}y \mathrm{d}\tau.$$
(26)

Take the cut-off function (23) with $\theta = 1/2$ and set $\mathbf{v} = \varphi \mathbf{u}$. Then $\mathfrak{L}\mathbf{v} = \varphi(x, t)\mathfrak{L}\mathbf{u} + \mathfrak{L}'(x, t, D_x)\mathbf{u} \in L^{q_1}(\mathcal{C}_r)$ with $q_1 = \min\left\{p, \frac{q(n+2b)}{n+2b-q}\right\}$ if q < n+2b and $q_1 = p$ otherwise (see [25, Theorem 2.5]). To show $\mathbf{v} \in W_{q_1}^{2b,1}(\mathcal{C}_r)$ we rely on formula (17) and define

$$\mathbf{V}_{\alpha}(x,t) := P.V. \int_{\mathcal{C}_{r}} D^{\alpha} \mathbf{\Gamma}(x,t;x-y,t-\tau) \mathfrak{L} \mathbf{v}(y,\tau) \mathrm{d}y \mathrm{d}\tau + \mathbf{F}(x,t) \mathfrak{L} \mathbf{v}(x,t)$$
(27)

which belongs to $L^{q_1}(\mathcal{C}_r)$ according to Lemma 12. Let $\omega \in [q, q_1]$ and define the operator **W**: $(L^{\omega}(\mathcal{C}_r))^N \to (L^{\omega}(\mathcal{C}_r))^N$, $N = m \operatorname{card}(\mathfrak{A})$, by $\mathbf{W}(\mathbf{w}) = (\mathbf{W}_{\alpha}(\mathbf{w}))_{\alpha \in \mathfrak{A}}$ where

$$\mathbf{W}_{\alpha}(\mathbf{w}) := \mathbf{V}_{\alpha} + \sum_{\alpha' \in \mathfrak{A}} \mathbf{U}_{\alpha,\alpha'}(\mathbf{w}_{\alpha'}).$$
(28)

If *r* is small enough then $\sum_{\alpha, \alpha' \in \mathfrak{A}} \|\mathbf{U}_{\alpha,\alpha'}\|_{L^{\omega}(\mathcal{C}_r)} < 1$ because of $\mathbf{A}_{\alpha} \in VMO$ and (20) and **W** is a contraction mapping. Hence, there is a unique fixed point $\mathbf{w}_0 = \mathbf{W}(\mathbf{w}_0)$ belonging to any $(L^{\omega}(\mathcal{C}_r))^N$ for each $\omega \in [q, q_1]$.

Whence $D^{2b}\mathbf{v} \in L^{q_1}(\mathcal{C}_r)$ according to (17) and this implies $D^{2b}\mathbf{u}$, $D_t\mathbf{u} \in L^{q_1}(\mathcal{C}_{r/2})$ by virtue of $\mathbf{f} \in L^p_{\text{loc}}(Q)$ and the parabolic structure of (6). To get $\mathbf{u} \in W^{2b,1}_{p,\text{loc}}(Q)$, it remains to iterate the above procedure finitely many times until $q_1 = p$.

Proof (Theorem 10) Let $\mathbf{u} \in W_{p,\lambda,\text{loc}}^{2b,1}(Q)$. Then $\mathbf{u} \in W_{p,\text{loc}}^{2b,1}(Q)$ and the representation formula (17) applied to $\mathbf{v} = \varphi \mathbf{u}$ still holds true. This way the estimate (11) follows as in the preceding proof making use of (19) and (21).

We shall stress now our attention on the improving-of-integrability property of the operator \mathfrak{L} in Morrey spaces. That is, let $\mathbf{f} \in L^{p,\lambda}_{loc}(Q)$ and suppose $\mathbf{u} \in W^{2b,1}_{q,loc}(Q)$ is a solution of (6) with $1 < q \leq p < +\infty$. Since $\mathbf{f} \in L^p_{loc}(Q)$, Theorem 8 gives $\mathbf{u} \in W^{2b,1}_{p,loc}(Q)$. Take arbitrary $\omega \in (1, +\infty)$ and $\mu \in (0, n + 2b)$. In view of (19), the operator $\mathbf{U}_{\alpha,\alpha'}$ as given by (26), is well-defined from $L^{\omega,\mu}(C_r)$ into itself and its norm is less than 1 if r is small enough. Arguing as in the preceding proof, we get $\mathfrak{L}\mathbf{v} = \varphi(x, t)\mathfrak{L}\mathbf{u} + \mathfrak{L}'(x, t, D_x)\mathbf{u}$ with ord $\mathfrak{L}' = 2b - 1$. By hypothesis $\mathfrak{L}\mathbf{u} \in L^{p,\lambda}(C_r)$ and $\mathfrak{L}'\mathbf{u} \in L^p(C_r)$. Employing Hölder's inequality, we get $\mathfrak{L}'\mathbf{u} \in L^{p,\lambda_1}(C_r)$ with $\lambda_1 = \min\{p, \lambda\}$ and therefore $\mathfrak{L}\mathbf{v} \in L^{p,\lambda_1}(C_r)$ as well. To get $\mathbf{v} \in W^{2b,1}_{p,\lambda_1}(C_r)$, we use (27) to define \mathbf{V}_{α} which is in $L^{p,\lambda_1}(C_r)$ as Lemma 12 asserts. Taking $\mu \in [0, \lambda_1]$ and consider the operator \mathbf{W} : $(L^{p,\mu}(C_r))^N \to (L^{p,\mu}(C_r))^N$ as given by (28), it follows as in the proof of Theorem 8 that \mathbf{W} possesses a unique fixed point $\mathbf{w}_0 = (D^{\alpha}\mathbf{v})_{\alpha\in\mathfrak{A}} \in (L^{p,\mu}(C_r))^N$ for all $\mu \in [0, \lambda_1]$. If $\lambda_1 = \lambda$ we have $D^{2b}\mathbf{u}$, $D_t\mathbf{u} \in L^{p,\lambda}(C_r/2)$ as desired. Otherwise, $\lambda_1 = p < \lambda$ and $\mathbf{u} \in W^{2b,1}_{p,p}(C_{r/2})$. Take again the cut-off function φ (cf. (23)) with $\theta = 1/4$ and calculate $\mathfrak{L}\mathbf{v}$ as above. Thus, $\mathfrak{L}\mathbf{v} \in L^{p,\lambda_2}(C_{r/2})$ with $\lambda_2 = \min\{2p,\lambda\}$ (see Lemma 15) and the arguments already used give $D^{2b}\mathbf{u}$, $D_t\mathbf{u} \in L^{p,\lambda_2}(C_{r/4})$. It remains to repeat the procedure finitely many times in order to complete the proof of Theorem 10.

Proof (Corollary 11) To obtain precise regularity of the lower order derivatives we need of the following Poincaré type inequality. \Box

Lemma 15 Let $\mathbf{u} \in W_p^{2b,1}(\mathcal{C}_r)$, then, for each $s \in \{0, 1, ..., 2b - 1\}$, we have

$$\begin{aligned} \int_{\mathcal{C}_r} |D^s \mathbf{u}(x,t) - (D^s \mathbf{u})_{\mathcal{C}_r}|^p \mathrm{d}x \mathrm{d}t \\ &\leq C \left(r^{(2b-s)p} \left(\|D^{2b}\mathbf{u}\|_{p;\mathcal{C}_r}^p + \|D_t\mathbf{u}\|_{p;\mathcal{C}_r}^p \right) + r^p \|D^{s+1}\mathbf{u}\|_{p;\mathcal{C}_r}^p \right) \end{aligned}$$

where $(D^{s}\mathbf{u})_{\mathcal{C}_{r}}$ is the integral average of $D^{s}\mathbf{u}$ over \mathcal{C}_{r} and C = C(p, m, n, s).

Let $Q_r = C_r \cap Q'$ where $2r < \text{dist}(\Omega', \partial \Omega'')$. To begin with, take s = 2b - 1. Direct calculations based on Lemma 15 lead to

$$\frac{1}{r^{p+\lambda}} \int_{Q_r} |D^{2b-1} \mathbf{u}(x,t) - (D^{2b-1} \mathbf{u})_{Q_r}|^p dx dt$$

$$\leq C(n, p, m) \left(\frac{1}{r^{\lambda}} \|D^{2b} \mathbf{u}\|_{p;Q_r}^p + \frac{1}{r^{\lambda}} \|D_t \mathbf{u}\|_{p;Q_r}^p \right)$$

$$\leq C \left(\|D^{2b} \mathbf{u}\|_{p,\lambda;\widetilde{Q}'}^p + \|D_t \mathbf{u}\|_{p,\lambda;\widetilde{Q}'}^p \right),$$
(29)

where $\widetilde{Q}' = \widetilde{\Omega}' \times (0, T)$ and $\Omega' \in \widetilde{\Omega}' \in \Omega''$. Taking the supremum with respect to r we get *the Campanato seminorm* of $D^{2b-1}\mathbf{u}$ on the left-hand side which, in view of (11), turns out to be bounded by the Morrey norms of \mathbf{f} and \mathbf{u} in Q''. Now, employing the embedding properties of Campanato spaces into Morrey and Hölder ones (see [4], and [16] for more general functional settings) we obtain as follows. If $p + \lambda < n + 2b$ then $D^{2b-1}\mathbf{u} \in L^{p,p+\lambda}(Q')$ and $\|D^{2b-1}\mathbf{u}\|_{p,p+\lambda;Q'}$ is controlled in terms of $\|\mathbf{f}\|_{p,\lambda;Q''}$ and $\|\mathbf{u}\|_{p,\lambda;Q''}$. If $p + \lambda > n + 2b$ then $D^{2b-1}\mathbf{u} \in C^{\sigma_{2b-1},\sigma_{2b-1}/2b}(Q')$ with $\sigma_{2b-1} = 1 - \frac{n+2b-\lambda}{p}$ (cf. [16, Corollary 1]). Finally, if $p + \lambda = n + 2b$ we first apply the Hölder inequality to $\|D^{2b-1}\mathbf{u} - (D^{2b-1}\mathbf{u})_{C_r}\|_{1;Q_r}$ and then Lemma 15 in order to obtain $D^{2b-1}\mathbf{u} \in BMO(Q')$. Having in mind the recursive character of Lemma 15, we shall complete the proof of Corollary 11 by running induction for decreasing values of s (see [20] for details).

The method employed in the proof of Corollary 11 could be applied also to derive Corollary 9 directly, without relying on Besov spaces. Moreover, repeating the arguments already used with $\lambda = 0$, we get the following refinement of Corollary 9.

Corollary 16 Under the hypotheses of Theorem 8, fix an $s \in \{0, 1, ..., 2b - 1\}$. Then there is a constant C such that

• *if* $p \in \left(1, \frac{n+2b}{2b-s}\right)$ then $D^s \mathbf{u} \in L^{p,(2b-s)p}(Q')$ and

 $\|D^{s}\mathbf{u}\|_{p,(2b-s)p;Q'} \leq C \left(\|\mathbf{f}\|_{p;Q''} + \|\mathbf{u}\|_{p;Q''}\right);$

• if $p = \frac{n+2b}{2b-s}$ then $D^s \mathbf{u} \in BMO(Q')$,

 $\|D^{s}\mathbf{u}\|_{*;Q'} \leq C \left(\|\mathbf{f}\|_{p;Q''} + \|\mathbf{u}\|_{p;Q''}\right)$

and moreover, $D^{s}\mathbf{u} \in VMO(Q')$.

5 Interior regularity for elliptic systems

Consider a linear elliptic system in an open bounded domain Ω in \mathbb{R}^n , $n \ge 2$

$$\mathfrak{L}(x, D)\mathbf{u} := \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}(x) D^{\alpha} \mathbf{u}(x) = \mathbf{f}(x)$$
(30)

for the unknown vector-valued function $\mathbf{u}: \Omega \to \mathbb{R}^m$ where $\mathbf{A}_{\alpha}(x)$ is the $m \times m$ -matrix $\left\{a_{\alpha}^{jk}(x)\right\}_{j,k=1}^m$ and $a_{\alpha}^{jk}: \Omega \to \mathbb{R}$ are measurable functions. We suppose (30) to be an *elliptic system*, that is, the characteristic determinant of $\mathfrak{L}(x,\xi)$ is non-vanishing for a.a. $x \in \Omega$ and all $\xi \neq 0$. This rewrites as (see [5,7])

$$\exists \, \delta > 0: \quad \det \left\{ \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}(x) \xi^{\alpha} \right\} \ge \delta |\xi|^{2bm} \quad \text{a.a. } x \in \Omega, \; \forall \xi \in \mathbb{R}^{n}. \tag{31}$$

Our goal is to obtain interior Hölder regularity of the solutions to (30) as a byproduct of the following a'priori estimate in Sobolev–Morrey classes.

Theorem 17 Suppose (31), $a_{\alpha}^{jk} \in VMO(\Omega) \cap L^{\infty}(\Omega)$, $\mathbf{f} \in L^{p,\lambda}_{loc}(\Omega)$, $1 , <math>0 < \lambda < n$, and let $\mathbf{u} \in W^{2b,p,\lambda}_{loc}(\Omega)$ be a strong solution of (30). Then, for any $\Omega' \subseteq \Omega'' \subseteq \Omega$ there is a constant *C* depending on *n*, *m*, *b*, *p*, λ , δ , $\|a_{\alpha}^{jk}\|_{\infty;\Omega}$, the *V*MO-moduli $\eta_{a_{\alpha}^{jk}}$ of the coefficients (cf. [5,6]) and dist $(\Omega', \partial \Omega'')$, such that

$$\|\mathbf{u}\|_{W^{2b,p,\lambda}(\Omega')} \le C \left(\|\mathbf{f}\|_{p,\lambda;\Omega''} + \|\mathbf{u}\|_{p,\lambda;\Omega''}\right).$$
(32)

It turns out, moreover, that the operator \mathfrak{L} improves the integrability of solutions to (30). In fact, by means of standard homotopy arguments and making use of formula (17) (cf. [5,19,21, Sect. 3]), it is easy to get

Corollary 18 Under the hypotheses of Theorem 17, suppose $\mathbf{u} \in W^{2b,q}_{\text{loc}}(\Omega)$ with $q \in (1, p]$. Then $\mathbf{u} \in W^{2b,p,\lambda}_{\text{loc}}(\Omega)$.

A combination of (32) with the embedding properties of Sobolev–Morrey spaces leads to a precise characterization of the Morrey, *BMO* and Hölder regularity of the solutions to (30).

Corollary 19 Under the hypotheses of Theorem 17 define s_0 as the least non-negative integer such that $\frac{n}{2b-s_0} > 1$ and fix an $s \in \{s_0, \ldots, 2b-1\}$. Then there is a constant C such that:

- if $p \in \left(1, \frac{n-\lambda}{2b-s}\right)$ then $D^s \mathbf{u} \in L^{p,(2b-s)p+\lambda}(\Omega')$ and $\|D^s \mathbf{u}\|_{p,(2b-s)p+\lambda;\Omega'} \le C\left(\|\mathbf{f}\|_{p,\lambda;\Omega''} + \|\mathbf{u}\|_{p,\lambda;\Omega''}\right);$
- if $p = \frac{n-\lambda}{2b-s}$ then $D^s \mathbf{u} \in BMO(\Omega')$ and

$$\|D^{s}\mathbf{u}\|_{BMO;\Omega'} \leq C\left(\|\mathbf{f}\|_{p,\lambda;\Omega''} + \|\mathbf{u}\|_{p,\lambda;\Omega''}\right);$$

• if
$$p \in \left(\frac{n-\lambda}{2b-s}, \frac{n-\lambda}{2b-s-1}\right)^2$$
 then $D^s \mathbf{u} \in C^{0,\sigma_s}(\Omega')$ with $\sigma_s = 2b - s - \frac{n-\lambda}{p}$ and

$$\sup_{\substack{x\neq x'\\ \iota,x'\in\Omega'}}\frac{\left|D^{s}\mathbf{u}(x)-D^{s}\mathbf{u}(x')\right|}{|x-x'|^{\sigma_{s}}}\leq C\left(\|\mathbf{f}\|_{p,\lambda;\Omega''}+\|\mathbf{u}\|_{p,\lambda;\Omega''}\right).$$

² This rewrites as $p \in (n - \lambda, \infty)$ when s = 2b - 1.

Fig. 2 The plane $O_{p,\lambda}$

If $s_0 \ge 1$ (i.e., $2b \ge n$) and $p \in \left(1, \frac{n-\lambda}{2b-s_0}\right)$ then $\mathbf{u} \in C^{s_0-1, 2b-s_0+1-\frac{n-\lambda}{p}}(\Omega')$ and

$$\sup_{\substack{x \neq x' \\ x, x' \in \Omega'}} \frac{\left| D^{s_0 - 1} \mathbf{u}(x) - D^{s_0 - 1} \mathbf{u}(x') \right|}{\left| x - x' \right|^{2b - s_0 + 1 - \frac{n - \lambda}{p}}} \le C \left(\| \mathbf{f} \|_{p, \lambda; \Omega''} + \| \mathbf{u} \|_{p, \lambda; \Omega''} \right)$$

Figure 2 illustrates geometrically the results of Corollary 19 with the couple (p, λ) lying in the semistrip $\{(p, \lambda): p > 1, 0 < \lambda < n\}$ and $s \in \{s_0, \ldots, 2b - 1\}$. The points B_s on the *p*-axis are $B_s = \left(\frac{n}{2b-s}, 0\right)$, B = (1, 0), and $A_s = (1, n - 2b + s)$ is the intersection of the line through (0, n) and B_s with the vertical line $\{p = 1\}$.

When (p, λ) belongs to the open right triangle $\triangle BB_s A_s$ then $D^s \mathbf{u} \in L^{p,(2b-s)p+\lambda}(\Omega')$. If (p, λ) lies on the open segment (A_s, B_s) we have $D^s \mathbf{u} \in BMO(\Omega')$. In particular, $(p, \lambda) \in \triangle BB_{s_0}A_{s_0}$ yields $D^{s_0}\mathbf{u} \in L^{p,(2b-s_0)p+\lambda}(\Omega')$, while $\mathbf{u} \in C^{s_0-1,2b-s_0+1-\frac{n-\lambda}{p}}(\Omega')$ if $s_0 \ge 1$. Further on, $(p, \lambda) \in (A_{s_0}, B_{s_0})$ gives $D^{s_0}\mathbf{u} \in BMO(\Omega')$.

Let $s \in \{s_0, \ldots, 2b - 2\}$ and suppose (p, λ) lies in the interior of the quadrilateral $Q_s := B_s B_{s+1} A_{s+1} A_s$. Then $D^s \mathbf{u} \in C^{0,\sigma_s}(\Omega')$ whereas $D^{s+1} \mathbf{u} \in L^{p,(2b-s-1)p+\lambda}(\Omega')$. Moreover, the exponent σ_s is the length of the segment (C, A_s) where $C = C(p, \lambda)$ is the intersection of the line $\{p = 1\}$ with the line passing through the points (p, λ) and (0, n). In particular, $(p, \lambda) \in (A_{s+1}, B_{s+1})$ implies $D^{s+1} \mathbf{u} \in BMO(\Omega')$.

Similarly, set Q_{2b-1} for the shadowed *unbounded region* on the picture. Then $(p', \lambda') \in Q_{2b-1}$ gives $D^{2b-1}\mathbf{u} \in C^{0,\sigma_{2b-1}}(\Omega')$ with σ_{2b-1} equals to the length $|C'A_{2b-1}|, C' = C'(p', \lambda')$, while $D^{2b-1}\mathbf{u} \in BMO(\Omega')$ if $(p', \lambda') \in (A_{2b-1}, B_{2b-1})$.

6 Newtonian-type potentials

Fix the coefficients of (30) at a point $x_0 \in \Omega$ and consider the constant coefficients operator $\mathfrak{L}(x_0, D) := \sum_{|\alpha|=2b} \mathbf{A}_{\alpha}(x_0) D^{\alpha}$. Let $\Gamma(x_0; x)$ be the fundamental matrix of $\mathfrak{L}(x_0, D)$ (cf. [7,24]).

Take r > 0 so small that $B_r = \{x \in \mathbb{R}^n : |x - x_0| < r\} \subseteq \Omega$, and let $\mathbf{v} \in C_0^{\infty}(B_r)$. Then, employing

$$\mathfrak{L}(x_0, D)\mathbf{v}(x) = \big(\mathfrak{L}(x_0, D) - \mathfrak{L}(x, D)\big)\mathbf{v}(x) + \mathfrak{L}(x, D)\mathbf{v}(x)$$

and using standard approach (cf. [5,7,18]), we obtain a representation of **v** in terms of the Newtonian-type potentials

$$\mathbf{v}(x) = \int_{B_r} \mathbf{\Gamma}(x_0; x - y) \mathfrak{L} \mathbf{v}(y) dy + \int_{B_r} \mathbf{\Gamma}(x_0; x - y) \big(\mathfrak{L}(x_0, D) - \mathfrak{L}(y, D) \big) \mathbf{v}(y) dy.$$

Taking the 2*b*-order derivatives and then unfreezing the coefficients by putting $x_0 = x$, we get

$$D^{\alpha}\mathbf{v}(x) = \underbrace{P.V. \int_{B_{r}} D^{\alpha}\Gamma(x; x - y)\mathfrak{L}\mathbf{v}(y)dy}_{=: \mathfrak{K}_{\alpha}(\mathfrak{L}\mathbf{v})} + \sum_{|\alpha'|=2b} \underbrace{p.v. \int_{B_{r}} D^{\alpha}\Gamma(x; x - y) (\mathbf{A}_{\alpha'}(x) - \mathbf{A}_{\alpha'}(y)) D^{\alpha'}\mathbf{v}(y)dy}_{=: \mathfrak{C}_{\alpha}[\mathbf{A}_{\alpha'}, D^{\alpha'}\mathbf{v}]} + \int_{\mathbb{S}^{n-1}} D^{\beta^{s}}\Gamma(x; y)v_{s}d\sigma_{y} \mathfrak{L}\mathbf{v}(x) \quad \forall \alpha : |\alpha| = 2b$$
(33)

where the derivatives $D^{\alpha} \Gamma(\cdot; \cdot)$ are taken with respect to the second variable, the multiindices β^s are such that $\beta^s := (\alpha_1, \ldots, \alpha_{s-1}, \alpha_s - 1, \alpha_{s+1}, \ldots, \alpha_n), |\beta^s| = 2b - 1$ and ν_s is the *s*-th component of the outer normal to \mathbb{S}^{n-1} .

Noting that each entry of the matrix $D^{\alpha}\Gamma(x; y)$, $|\alpha| = 2b$, is a *Calderón–Zygmund kernel* (cf. [5,6]), we have

Lemma 20 Let $|\alpha| = |\alpha'| = 2b$ and $\mathbf{A}_{\alpha} \in VMO \cap L^{\infty}(\Omega)$ with VMO-modulus $\eta_{\mathbf{A}_{\alpha}}$. For each $p \in (1, \infty)$ and each $\lambda \in (0, n)$ there is a constant C depending on n, m, b, δ , $\|\mathbf{A}_{\alpha}\|_{\infty;\Omega}$, p and λ such that

$$\|\mathbf{\mathfrak{K}}_{\alpha}\mathbf{f}\|_{p,\lambda;\Omega} \le C\|\mathbf{f}\|_{p,\lambda;\Omega}, \quad \|\mathbf{\mathfrak{C}}_{\alpha}[\mathbf{A}_{\alpha'},\mathbf{f}]\|_{p,\lambda;\Omega} \le C\|\mathbf{A}_{\alpha'}\|_{*;\Omega}\|\mathbf{f}\|_{p,\lambda;\Omega}$$
(34)

for all $\mathbf{f} \in L^{p,\lambda}(\Omega)$. Moreover, for each $\varepsilon > 0$ there exists $r_0 = r_0(\varepsilon, \eta_{\mathbf{A}_{\alpha}})$ such that if $r < r_0$ we have

$$\|\mathbf{\mathfrak{C}}_{\alpha}[\mathbf{A}_{\alpha'},\mathbf{f}]\|_{p,\lambda;B_r} \le C\varepsilon \|\mathbf{f}\|_{p,\lambda;B_r}$$
(35)

for all $B_r \subseteq \Omega$ and all $\mathbf{f} \in L^{p,\lambda}(B_r)$.

Lemma 20 is a particular case of Corollaries 5 and 6 (see [19,21]).

441

D Springer

References

- Bramanti, M., Cerutti, M.C.: W^{2,1}_p-solvability for the Cauchy–Dirichlet problem for parabolic equations with VMO coefficients. Comm. Part. Diff. Eq. 18, 1735–1763 (1993)
- Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85– 139 (1952)
- Calderón, A.P., Zygmund, A.: Singular integral operators and differential equations. Am. J. Math. 79, 901–921 (1957)
- Campanato, S.: Proprietá di Hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa 17, 175–188 (1963)
- Chiarenza, F., Franciosi, M., Frasca, M.: L^p estimates for linear elliptic systems with discontinuous coefficients. Rend. Accad. Naz. Lincei, Mat. Appl. 5, 27–32 (1994)
- Chiarenza, F., Frasca, M., Longo, P.: Interior W², *p* estimates for non divergence elliptic equations with discontinuous coefficients. Ric. Mat. **60**, 149–168 (1991)
- Douglis, A., Nirenberg, L.: Interior estimates for elliptic systems of partial differential equations. Commun. Pure Appl. Math. 8, 503–538 (1955)
- 8. Ejdel'man, S.D.: Parabolic Systems. North-Holland, Amsterdam, London (1969)
- Ejdel'man, S.D.: Parabolic equations. In: Egorov, Yu. V., Shubin, M.A. (Eds.) Partial Differential Equations. VI: Elliptic and Parabolic Operators, Encycl. Math. Sci. 63, 203–316. Springer-Verlag, Berlin (1994)
- 10. Fabes, E.B., Rivière, N.: Singular integrals with mixed homogeneity. Studia Math. 27, 19–38 (1966)
- Friedman, A.: Interior estimates for parabolic systems of partial differential equations. J. Math. Mech. 7, 393–418 (1958)
- Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, NJ (1964)
- Il'in, V.P.: Properties of certain classes of differentiable functions of several variables defined in an n-dimensional domain. Trudy Mat. Inst. Steklov. 66, 227–363 (1962)
- Il'in, V.P., Solonnikov, V.A.: Some properties of differentiable functions of several variables. Trudy Mat. Inst. Steklov. 66, 205–426 (1962)
- John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415– 426 (1961)
- 16. Kronz, M.: Some function spaces on spaces of homogeneous type. Manuscr. Math. 106, 219–248 (2001)
- Ladyzhenskaya, O.A., Solonnikov, V.A., Ural'tseva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Transl. Math Monographs, vol. 23, Amer. Math. Soc., Providence, R.I. (1968)
- Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Wiley-VCH, Berlin (2000)
- Palagachev, D., Softova, L.: Singular integral operators, Morrey spaces and fine regularity of solutions to PDE's'. Potential Anal. 20, 237–263 (2004)
- Palagachev, D., Softova, L.: A priori estimates and precise regularity for parabolic systems with discontinuous data. Discr. Cont. Dynam. Syst. 13(3), 721–742 (2005)
- Palagachev, D., Softova, L.: Fine regularity for elliptic systems with discontinuous ingredients. Arch. Math. 86(2), 145–153 (2006)
- 22. Sarason, D.: Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207, 391-405 (1975)
- Softova, L.G.: Parabolic equations with VMO coefficients in Morrey spaces. Electr. J. Diff. Eq. 2001 (51), 1–25 (2001)
- Solonnikov, V.A.: On the boundary value problems for linear parabolic systems of differential equations of general form. Proc. Steklov Inst. Math. 83, 1–184 (1965); English translation: Ladyzhenskaya, O. A. (Ed.) Boundary Value Problems of Mathematical Physics III. Amer. Math. Soc., Providence, R.I (1967)
- Solonnikov, V.A.: Estimates in L_p of solutions of elliptic and parabolic systems. Proc. Steklov Inst. Math. 102, 137–160 (1967); English translation: Ladyzhenskaya, O. A. (Ed.) Boundary Value Problems of Mathematical Physics V. Amer. Math. Soc., Providence, R.I (1970)